Дуга в сварке это


Сварочная дуга - это... Что такое Сварочная дуга?

Сварочная дуга
        электрическая дуга, образующаяся в зоне сварки (См. Сварка) (или резки) при прохождении электрического тока через газ между электродами. С. д. — наиболее развитая форма разряда в газах (см. Дуговой разряд), характеризующаяся малым напряжением, большим током, наличием ионизации газов в дуговом промежутке. Ионизируемый газ столба дугового разряда ярко светится и имеет температуру 6000—10000 °С в осевой части столба разряда. Основной фактор ионизации — высокая температура, поддерживаемая притоком энергии из питающей цепи. Напряжение С. д., т. е. напряжение между концами электродов, существенно зависит от длины дуги, силы тока, материала и размера сварочных электродов, состава и давления газа и других факторов. Для управления свойствами С. д. изменяют длину дуги от 0,01 до 1 см, силу тока от 0,5 до 3000 а, давление газа от 102 до 105 н/м2 (от 0,001 до 1 кгс/см2), материал, форму и размеры одного из электродов, защищают зону горения газами, сжимают дугу и т. д.

         Тепловая мощность С. д. лежит в пределах от 10 до 105вт при концентрации от 102 до 105 вт/см2. Широкий диапазон мощностей позволяет применять С. д. для сварки и резки различных материалов толщиной от 0,05 до 100 мм за один или несколько проходов.

         Г. И. Лесков.

        

        Схема дугового разряда при сварке: 1 — катод; 2 — столб дугового разряда; 3 — анод; 4 — пламя сварочной дуги.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

  • Сварочная горелка
  • Сварочное железо

Смотреть что такое "Сварочная дуга" в других словарях:

  • сварочная дуга — Стабильный разряд электричества в ионизированной атмосфере газов и паров металла, возникающий между основным металлом и электродом. [http://sl3d.ru/o slovare.html] Тематики машиностроение в целом …   Справочник технического переводчика

  • сварочная дуга — suvirinimo lankas statusas T sritis automatika atitikmenys: angl. welding arc vok. Schweißlichtbogen, m rus. сварочная дуга, f pranc. arc de soudage, m …   Automatikos terminų žodynas

  • сварочная дуга косвенного действия — Сварочная дуга, при которой объект сварки не включён в цепь сварочного тока. [http://sl3d.ru/o slovare.html] Тематики машиностроение в целом …   Справочник технического переводчика

  • сварочная дуга прямого действия — Сварочная дуга, при которой объект сварки включен в цепь сварочного тока. [http://sl3d.ru/o slovare.html] Тематики машиностроение в целом …   Справочник технического переводчика

  • сварочная дуга с возрастающей характеристикой — Сварочная дуга с зависимостью тока дуги от напряжения. [http://sl3d.ru/o slovare.html] Тематики машиностроение в целом …   Справочник технического переводчика

  • сварочная дуга с жёсткой характеристикой — Сварочная дуга без зависимости тока дуги от напряжения. [http://sl3d.ru/o slovare.html] Тематики машиностроение в целом …   Справочник технического переводчика

  • короткая сварочная дуга — Сварочная дуга небольшой длины. [http://sl3d.ru/o slovare.html] Тематики машиностроение в целом …   Справочник технического переводчика

  • сварочная цепь — 3.11 сварочная цепь: Цепь, которая включает в себя все проводящие элементы, через которые будет протекать сварочный ток. Примечания 1 При дуговой сварке дуга является частью сварочной цепи. 2 В некоторых процессах дуговой сварки дуга может быть… …   Словарь-справочник терминов нормативно-технической документации

  • Сварка —         технологический процесс соединения твёрдых материалов в результате действия межатомных сил, которое происходит при местном сплавлении или совместном пластическом деформировании свариваемых частей. С. получают изделия из металла и… …   Большая советская энциклопедия

  • Сварка — Сварщик за работой Сварка  это технологический процесс получения неразъёмного соединения посредством установления межатомных и межмолекулярных связей между свариваемыми частями изделия при их нагреве (местном или общем), и/или …   Википедия

Электрическая дуга, способы сварки и сварные соединения

Природа сварочной дуги

Электрическая дуга представляет собой один из видов электрических разрядов в газах, при котором наблюдается прохождение электрического тока через газовый промежуток под воздействием электрического поля. Электрическую дугу, используемую для сварки металлов, называют сварочной дугой. Дуга является частью электрической сварочной цепи, и на ней происходит падение напряжения. При сварке на постоянном токе электрод, подсоединенный к положительному полюсу источника питания дуги, называют анодом, а к отрицательному - катодом. Если сварка ведется на переменном токе, каждый из электродов является попеременно то анодом, то катодом.

Промежуток между электродами называют областью дугового разряда или дуговым промежутком. Длину дугового промежутка называют длиной дуги. В обычных условиях при низких температурах газы состоят из нейтральных атомов и молекул и не обладают электрической проводимостью. Прохождение электрического тока через газ возможно только при наличии в нем заряженных частиц - электронов и ионов. Процесс образования заряженных частиц газа называют ионизацией, а сам газ - ионизованным. Возникновение заряженных частиц в дуговом промежутке обусловливается эмиссией (испусканием) электронов с поверхности отрицательного электрода (катода) и ионизацией находящихся в промежутке газов и паров. Дуга, горящая между электродом и объектом сварки, является дугой прямого действия. Такую дугу принято называть свободной дугой в отличие от сжатой, поперечное сечение которой принудительно уменьшено за счет сопла горелки, потока газа, электромагнитного поля. Возбуждение дуги происходит следующим образом. При коротком замыкании электрода и детали в местах касания их поверхности разогреваются. При размыкании электродов с нагретой поверхности катода происходит испускание электронов - электронная эмиссия. Выход электронов в первую очередь связывают с термическим эффектом (термоэлектронная эмиссия) и наличием у катода электрического поля высокой напряженности (автоэлектронная эмиссия). Наличие электронной эмиссии с поверхности катода является непременным условием существования дугового разряда.

По длине дугового промежутка дуга разделяется на три области (рис. 1): катодную, анодную и находящийся между ними столб дуги. Катодная область включает в себя нагретую поверхность катода, называемую катодным пятном, и часть дугового промежутка, примыкающую к ней.

 

Протяженность катодной области мала, но она характеризуется повышенной напряженностью и протекающими в ней процессами получения электронов, являющимися необходимым условием для существования дугового разряда. Температура катодного пятна для стальных электродов достигает 2400 - 2700°С. На нем выделяется до 38% общей теплоты дуги. Основным физическим процессом в этой области является электронная эмиссия и разгон электронов. Падение напряжения в катодной области UK составляет порядка 12 - 17 В.

Анодная область состоит из анодного пятна на поверхности анода и части дугового промежутка, примыкающего к нему. Ток в анодной области определяется потоком электронов, идущих из столба дуги. Анодное пятно является местом входа и нейтрализации свободных электронов в материале анода. Оно имеет примерно такую же температуру, как и катодное пятно, но в результате бомбардировки электронами на нем выделяется больше теплоты, чем на катоде. Анодная область также характеризуется повышенной напряженностью. Падение напряжения в ней Uк составляет порядка 2 - 11 В. Протяженность этой области также мала.

Столб дуги занимает наибольшую протяженность дугового промежутка, расположенную между катодной и анодной областями. Основным процессом образования заряженных частиц здесь является ионизация газа. Этот процесс происходит в результате соударения заряженных (в первую очередь электронов) и нейтральных частиц газа. При достаточной энергии соударения из частиц газа происходит выбивание электронов и образование положительных ионов. Такую ионизацию называют ионизацией соударением. Соударение может произойти и без ионизации, тогда энергия соударения выделяется в виде теплоты и идет на повышение температуры дугового столба. Образующиеся в столбе дуги заряженные частицы движутся к электродам: электроны - к аноду, ионы - к катоду. Часть положительных ионов достигает катодного пятна, другая же часть не достигает и, присоединяя к себе отрицательно заряженные электроны, становятся нейтральными атомами. Такой процесс нейтрализации частиц называют рекомбинацией. В столбе дуги при всех условиях горения ее наблюдается устойчивое равновесие между процессами ионизации и рекомбинации. В целом столб дуги не имеет заряда. Он нейтрален, так как в каждом сечении его одновременно находятся равные количества противоположно заряженных частиц. Температура столба дуги достигает 6000 - 8000°С и более. Падение напряжения в нем Uc изменяется практически линейно по длине, увеличиваясь с увеличением длины столба. Падение напряжения зависит от состава газовой среды и уменьшается с введением в нее легко ионизующихся компонентов. Такими компонентами являются щелочные и щелочно-земельные элементы (Са, Na, К и др.). Общее падение напряжения в дуге Uд = Uк + Uа + Uс. Принимая падение напряжения в столбе дуги в виде линейной зависимости, его можно представить формулой Uс = Еlс, где Е - напряженность по длине, lс - длина столба. Значения Uк, Uа, Е практически зависят лишь от материала электродов и состава среды дугового промежутка и при их неизменности остаются постоянными при разных условиях сварки. В связи с малой протяженностью катодной и анодной областей можно считать практически lс = lд. Тогда получается выражение Uд = a + blд показывающее, что напряжение дуги прямым образом зависит от ее длины, где а = Uк + Uа; b = Е.

Непременным условием получения качественного сварного соединения является устойчивое горение дуги (ее стабильность). Под этим понимают такой режим ее существования, при котором дуга длительное время горит при заданных значениях силы тока и напряжения, не прерываясь и не переходя в другие виды разрядов. При устойчивом горении сварочной дуги основные ее параметры- сила тока и напряжение- находятся в определенной взаимозависимости. Поэтому одной из основных характеристик дугового разряда является зависимость ее напряжения от силы тока при постоянной длине дуги. Графическое изображение этой зависимости при работе в статическом режиме (в состоянии устойчивого горения дуги)называют статической вольтамперной характеристики дуги (рис. 2).

С увеличением длины дуги ее напряжение возрастает и кривая статической вольтамперной характеристики поднимается выше, с уменьшением длины дуги опускается ниже, качественно сохраняя при этом свою форму. Кривую статической характеристики можно разделить на три области: падающую, жесткую и возрастающую. В первой области увеличение тока приводит к резкому падению напряжения дуги.

Это обусловлено тем, что с увеличением силы тока увеличиваются площадь сечения столба дуги и его электропроводность. Горение дуги на режимах в этой области отличается малой устойчивостью. Во второй области увеличение силы тока не связано с изменением напряжения дуга. Это объясняется тем, что площадь сечения столба дуги и активных пятен изменяется пропорционально силе тока, в связи с чем плотность тока и падение напряжения в дуге сохраняются постоянными.

 

 

Сварка дугой с жесткой статической характеристикой находит широкое применение в сварочной технологии, особенно при ручной сварке. В третьей области с увеличением силы тока напряжение возрастает. Это связано с тем, что диаметр катодного пятна становится равным диаметру электрода и увеличиваться далее не может, при этом в дуге возрастает плотность тока и падает напряжение. Дуга с возрастающей статической характеристикой широко используется при автоматической и механизированной сварке под флюсом и в защитных газах с применением тонкой сварочной проволоки. При механизированной сварке плавящимся электродом иногда применяют статическую вольтамперную характеристику дуги, снятую не при постоянной ее длине, а при постоянной скорости подачи электродной проволоки (рис. 3).

 

Как видно из рисунка, каждой скорости подачи электродной проволоки соответствует узкий диапазон токов с устойчивым горением дуга. Слишком малый сварочный ток может привести к короткому замыканию электрода с изделием, а слишком большой- к резкому возрастанию напряжения и ее обрыву.

 

Особенности дуги на переменном токе

При сварке на постоянном токе в установившемся режиме все процессы в дуге протекают с определенной скоростью и горение дуги отличается высокой стабильностью.

При питании дуга переменным током полярность электрода и изделия, а также условия существования дугового разряда периодически изменяются. Так, дуга переменного тока промышленной частоты 50 Гц погасает и вновь возбуждается 100 раз в секунду, или дважды за каждый период. Поэтому особо возникает вопрос об устойчивости горения дуги переменного тока. В первую очередь устойчивость горения такой дуги зависит от того, насколько легко происходит повторное возбуждение дуги в каждом полупериоде. Это определяется ходом физических и электрических процессов в дуговом промежутке и на электродах в отрезки времени между каждым погасанием и новым зажиганием дуги. Снижение тока сопровождается соответствующим уменьшением температуры в столбе дуги и степени ионизации дугового промежутка. При переходе тока через нуль и перемене полярности в начале и конце каждого полупериода дуга гаснет. Одновременно падает и температура активных пятен на аноде и катоде. Падение температуры несколько отстает по фазе при переходе тока через нуль, что связано с тепловой инерционностью процесса. Особенно интенсивно падает температура активного пятна, расположенного на поверхности сварочной ванны, в связи с интенсивным отводом теплоты в массу детали. В следующий за погасанием дуги момент меняется полярность напряжения на дуговом промежутке (рис. 4).

 

Одновременно изменяется и направление движения заряженных частиц в дуговом промежутке. В условиях пониженной температуры активных пятен и степени ионизации в дуговом промежутке повторное зажигание дуги в начале каждого полупериода происходит только при повышенном напряжении между электродами, именуемым пиком зажигания или напряжением повторного зажигания дуги. Пик зажигания всегда выше напряжения дуги, соответствующего стабильному режиму ее горения. При этом величина пика зажигания несколько выше в тех случаях, когда катодное пятно находится на основном металле. Величина пика зажигания существенно влияет на устойчивость горения дуги переменного тока. Деионизация и охлаждение дугового промежутка возрастают с увеличением длины дуги, что приводит к необходимости дополнительного повышения пика зажигания и влечет снижение устойчивости дуги. Поэтому затухание и обрыв дуги переменного тока при прочих равных условиях всегда происходят при меньшей ее длине, чем для постоянного тока. При наличии в дуговом промежутке паров легко-ионизующихся элементов пик зажигания уменьшается и устойчивость горения дуга переменного тока повышается.

С увеличением силы тока физические условия горения дуги улучшаются, что также приводит к снижению пика зажигания и повышению устойчивости дугового разряда. Таким образом, величина пика зажигания является важной характеристикой -дуги переменного тока и оказывает существенное влияние на ее устойчивость. Чем хуже условия для повторного возбуждения дуги, тем больше разница между пиком зажигания и напряжением дуги. Чем выше пик зажигания, тем выше должно быть напряжение холостого хода источника питания дуги током. При сварке на переменном токе неплавящимся электродом, когда материал его и изделия резко различаются по своим теплофизическим свойствам, проявляется выпрямляющее действие дуги. Это характеризуется протеканием в цепи переменного тока некоторой составляющей постоянного тока, сдвигающей в определенном направлении кривые напряжения и тока от горизонтальной оси (рис. 5). Наличие в сварочной цепи составляющей постоянного тока отрицательно сказывается на качестве сварного соединения и условиях процесса: уменьшается глубина проплавления, увеличивается напряжение дуги, значительно повышается температура электрода и увеличивается его расход. Поэтому приходится применять специальные меры для подавления действия постоянной составляющей.

 

При сварке плавящимся электродом, близким по составу к основному металлу, на режимах, обеспечивающих устойчивое горение дуги, выпрямляющее действие дуги незначительно и кривые тока и напряжения располагаются практически симметрично относительно оси абсцисс.

 

Технологические свойства дуги

Под технологическими свойствами сварочной дуги понимают совокупность ее теплового, механического и физико-химического воздействия на электроды, определяющие интенсивность плавления электрода, характер его переноса, проплавление основного металла, формирование и качество шва. К технологическим свойствам дуги относятся также ее пространственная устойчивость и эластичность. Технологические свойства дуги взаимосвязаны и определяются параметрами режима сварки.

Важными технологическими характеристиками дуги являются зажигание и стабильность горения дуги. Условия зажигания и горения дуги зависят от рода тока, полярности, химического состава электродов, межэлектродного промежутка и его длины. Для надежного обеспечения процесса зажигания дуй? необходимо подведение к электродам достаточного напряжения холостого хода источника питания дуги, но в то же время безопасного для работающего. Для сварочных источников напряжение холостого хода не превышает 80 В на переменном токе и 90 В на постоянном. Обычно напряжение зажигания дуги больше напряжения горения дуги на переменном токе в 1,2 - 2,5 раза, а на постоянном токе - в 1,2 - 1,4 раза. Дуга зажигается от нагрева электродов; возникающего при их соприкосновении. В момент отрыва электрода от изделия с нагретого катода происходит электронная эмиссия. Электронный ток ионизует газы и пары металла межэлектродного промежутка, и с этого момента в дуге появляются электронный и ионный токи. Время установления дугового разряда составляет 10-5 – 10-4 с. Поддержание непрерывного горения дуги будет осуществляться, если приток энергии в дугу компенсирует ее потери. Таким образом, условием для зажигания и устойчивого горения дуги является наличие специального источника питания электрическим током.

Вторым условием является наличие ионизации в дуговом промежутке. Степень протекания этого процесса зависит от химического состава электродов и газовой среды в дуговом промежутке. Степень ионизации выше при наличии в дуговом промежутке легкоионизующихся элементов. Горящая дуга может быть растянута до определенной длины, после чего она гаснет. Чем выше степень ионизации в дуговом промежутке, тем длиннее может быть дуга. Максимальная длина горящей без обрыва дуги характеризует важнейшее технологическое свойство ее - стабильность. Стабильность дуги зависит от целого ряда факторов: температуры катода, его эмиссионной способности, степени ионизации среды, длины дуги и др.

К технологическим характеристикам дуги относятся также пространственная устойчивость и эластичность. Под этим понимают способность сохранения дугой неизменности пространственного положения относительно электродов в режиме устойчивого горения и возможность отклонения и перемещения без затухания под воздействием внешних факторов. Такими факторами могут быть магнитные поля и ферромагнитные массы, с которыми дуга может взаимодействовать. При этом взаимодействии наблюдается отклонение дуги от естественного положения в пространстве. Отклонение столба дуги под действием магнитного поля, наблюдаемое в основном при сварке постоянным током, называют магнитным дутьем (рис. 6).

 

 

Возникновение его объясняется тем, что в местах изменения направления тока создаются напряженности магнитного поля. Дуга является своеобразной газовой вставкой между электродами и как любой проводник взаимодействует с магнитными полями. При этом столб сварочной дуги можно рассматривать в качестве гибкого проводника, который под воздействием магнитного поля может перемещаться, как любой проводник, деформироваться и удлиняться. Это приводит к отклонению дуги в сторону, противоположную большей напряженности. При сварке переменным током в связи с тем, что полярность меняется с частотой тока, это явление проявляется значительно слабее. Отклонение дуги также имеет место при сварке вблизи ферромагнитных масс (железо, сталь). Это объясняется тем, что магнитные силовые линии проходят через ферромагнитные массы, обладающие хорошей магнитной проницаемостью, значительно легче, чем через воздух. Дуга в этом случае отклонится в сторону таких масс.

Возникновение магнитного дутья вызывает непровары и ухудшение формирования швов. Устранить его можно за счет изменения места токоподвода к изделию или угла наклона электрода, временным размещением балластных ферромагнитных масс у сварного соединения, позволяющих выравнивать несимметричность магнитных полей, а также заменой постоянного тока переменным.

 

Понятие о сварке и ее сущность

Сложные конструкции, как правило, получают в результате объединения между собой отдельных элементов (деталей, агрегатов, узлов). Такие объединения могут выполняться с помощью разъемных или неразъемных соединений.

В соответствии с ГОСТ 2601-74 сварка определяется как процесс получения неразъемных соединений посредством установления межатомных связей между свариваемыми частями при их местном или общем нагреве или пластическом деформировании или совместным действием того и другого.

Неразъемные соединения, выполненные с помощью сварки, называют сварными соединениями. Чаще всего с помощью сварки соединяют детали из металлов. Однако сварные соединения применяют и для деталей из неметаллов - пластмасс, керамик или их сочетаний.

Для получения сварных соединений не требуется применения каких-либо специальных соединительных элементов (заклепок, накладок и т. п.). Образование неразъемного соединения в них обеспечивается за счет проявления действия внутренних сил системы. При этом происходит образование связей между атомами металла соединяемых деталей. Для сварных соединений характерно возникновение металлической связи, обусловленной взаимодействием ионов и обобществленных электронов.

Для получения сварного соединения совершенно недостаточно простого соприкосновения поверхностей соединяемых деталей. Межатомные связи могут установиться только тогда, когда соединяемые атомы получат некоторую дополнительную энергию, необходимую для преодоления существующего между ними определенного энергетического барьера. При этом атомы достигают состояния равновесия в. действии сил напряжения и отталкивания. Эту энергию называют энергией активации. При сварке ее вводят извне путем нагрева (термическая активация) или пластического деформирования (механическая активация).

Сближение свариваемых частей и приложение энергии активации - необходимые условия для образования неразъемных сварных соединений.

В зависимости от вида активации при выполнении соединений различают два вида сварки: плавлением и давлением. При сварке плавлением детали по соединяемым кромкам оплавляют под действием источника нагрева. Оплавленные поверхности кромок покрываются расплавленным металлом, который, сливаясь в общий объем, образует жидкую сварочную ванну. При охлаждении сварочной ванны жидкий металл затвердевает и образует сварной шов. Шов может быть образован или только за счет расплавления металла свариваемых кромок, или за счет их и дополнительного введения в сварочную ванну расплавляемой присадки.

Сущность сварки давлением состоит в непрерывном или прерывистом совместном пластическом деформировании материала по кромкам свариваемых деталей. Благодаря пластической деформации и течению металла облегчается установление межатомных связей соединяемых частей. Для ускорения процесса применяют сварку давлением с нагревом. В некоторых способах сварки давлением нагрев может производиться до оплавления металла свариваемых поверхностей.

 

Классификация видов сварки

В настоящее время различают более 150 видов сварочных процессов. ГОСТ 19521-74 устанавливает классификацию сварочных процессов по основным физическим, техническим и технологическим признакам.

Основой физических признаков классификации является форма энергии, используемой для получения сварного соединения. По физическим признакам все виды сварки относят к одному из трех классов: термическому, термомеханическому и механическому.

К термическому классу относят все виды сварки плавлением, осуществляемые с использованием тепловой энергии, - газовую, дуговую, электрошлаковую, электронно-лучевую, лазерную и др.

К термомеханическому классу относят все виды сварки, осуществляемые с использованием тепловой энергии и давления,— контактную, диффузионную, газо- и дугопрессовую, кузнечную и др.

К механическому классу относят все виды сварки давлением, осуществляемые с использованием механической энергии, - холодная, трением, ультразвуковая, взрывом и др.

К техническим признакам классификации сварочных процессов относят способы защиты металла в зоне сварки, непрерывность процесса и степень его механизации (рис. 7).

Технологические признаки классификации устанавливаются для каждого вида сварки отдельно. Например, вид дуговой сварки может быть классифицирован по следующим признакам: виду электрода, характеру защиты, уровню автоматизации и т. п.

 

Основные разновидности дуговой сварки

Источником нагрева при дуговых способах сварки является сварочная дуга, представляющая собой устойчивый электрический разряд, происходящий в газовой среде между двумя электродами или электродом и деталью. Для поддержания такого разряда нужной продолжительности необходимо применение специальных источников питания дуги (ИПД). Для питания дуги переменным током применяют сварочные трансформаторы, при постоянном токе- сварочные генераторы или сварочные выпрямители. На рис. 8 показана схема электрической цепи дуговой сварки.

 

 

Разработка дуговой сварки обусловлена открытием электрической дуги в 1802 г. русским физиком В.В. Петровым. Впервые для соединения металлических частей с помощью электрической дуги, горящей между неплавящимся угольным электродом и свариваемым изделием, было осуществлено Н.Н. Бенардосом в 1882 г. При необходимости в сварочную ванну дополнительно подавался присадочный материал. В 1888 г. русский инженер Н.Г. Славянов усовершенствовал процесс, заменив неплавящийся угольный электрод на плавящийся металлический. Тем самым было достигнуто объединение функций электрода для существования дугового разряда и присадочного металла для образования ванны. Предложенные Н.Н. Бенардосом и Н.Г. Славяновым способы дуговой сварки неплавящимся и плавящимся электродами легли в основу разработки наиболее распространенных современных способов дуговой сварки.

Дальнейшее совершенствование дуговой сварки шло по двум направлениям: 1) изыскание средств защиты и обработки расплавленного металла сварочной ванны; 2) автоматизация процесса. По характеру защиты свариваемого металла и сварочной ванны от окружающей среды могут быть выделены способы дуговой сварки с шлаковой, газошлаковой и газовой защитой. По степени автоматизации процесса способы разделяют на ручную, механизированную и автоматическую сварку. Ниже приводятся характеристики и описание основных разновидностей дуговой сварки.

Дуговая сварка покрытыми электродами (рис. 9). При этом способе процесс выполняется вручную. Сварочные электроды могут быть плавящиеся - стальные, медные, алюминиевые и др. - и неплавящиеся - угольные, графитовые, вольфрамовые.

 

 

Наиболее широко применяют сварку стальными электродами, имеющими на поверхности электродное покрытие. Покрытие электродов готовится из порошкообразной смеси различных компонентов и наносится на поверхность стального стержня в виде затвердевающей пасты. Его назначение - повысить устойчивость горения дуги, провести металлургическую обработку сварочной ванны, и улучшить качество сварки. Сварной шов образуют за счет расплавления металла свариваемых кромок и плавления стержня сварочного электрода. При этом сварщик вручную осуществляет два основных технологических движения: подачу покрытого электрода в зону сварки по мере его расплавления и перемещение дуги вдоль свариваемого шва. Ручная дуговая сварка покрытыми электродами — один из наиболее распространенных способов, используемых при изготовлении сварных конструкций. Она отличается простотой и универсальностью, возможностью выполнения соединений в различных пространственных положениях и труднодоступных местах. Существенный недостаток ее - малая производительность процесса и зависимость качества сварки от квалификации сварщика.

Дуговая сварка под флюсом (рис. 10). Электрическая дуга горит между плавящимся электродом и деталью под слоем сварочного флюса, полностью закрывающего дугу и сварочную ванну от взаимодействия с воздухом. Сварочный электрод выполнен в виде проволоки, свернутой в кассету и автоматически подаваемой в зону сварки. Перемещение дуги вдоль свариваемых кромок может выполняться или вручную, или с помощью специального привода. В первом случае процесс ведется с помощью сварочных полуавтоматов, во втором - сварочных автоматов. Дуговая сварка под флюсом отличается высокой производительностью и качеством получаемых соединений. К недостаткам процесса следует отнести трудность сварки деталей небольших толщин, коротких швов и выполнение швов в основных положениях, отличных от нижних. Подробную информацию о дуговой сварке под флюсом читайте в

 

 

Дуговая сварка в защитных газах (рис. 11). Электрическая дуга горит в среде специально подаваемых в зону сварки защитных газов. При этом можно использовать как неплавящийся, так и плавящийся электроды, а выполнять процесс ручным, механизированным или автоматическим способом. При сварке неплавящимся электродом применяют присадочную проволоку, при плавящемся электроде присадки не требуется. Сварка в защитных газах отличается широким разнообразием и применяется для широкого круга металлов и сплавов.

 

Электрошлаковая сварка (рис. 12). Процесс сварки является бездуговым. В отличие от дуговой сварки для расплавления основного и присадочного металлов используется теплота, выделяющаяся при прохождении сварочного тока через расплавленный электропроводный шлак (флюс). После затвердевания расплава образуется сварной шов. Сварку выполняют чаще всего при вертикальном положении свариваемых деталей с зазором между ними. Для формирования шва по обе стороны зазора устанавливают медные ползуны-кристаллизаторы, охлаждаемые водой. Электрошлаковую сварку применяют для соединения деталей больших толщин (от 20 до 1000 мм и более).

Сварные соединения и швы

Согласно ГОСТ 2601-84 устанавливается ряд терминов и определений связанных со сварными соединениями и швами.

Сварное соединение - это неразъемное соединение нескольких деталей, выполненное сваркой. Конструктивный тип сварного соединения определяется взаиморасположением свариваемых частей. При сварке плавлением различают следующие типы сварных соединений: стыковое, угловое, тавровое, нахлесточное и торцовое. Применяется также соединение нахлесточное с точечным сварным швом, выполненное дуговой сваркой.

Металлическую конструкцию, изготовленную сваркой из отдельных деталей, называют сварной конструкцией. Часть такой конструкции называют сварным узлом.

Стыковое соединение представляет собой сварное соединение двух деталей, расположенных в одной плоскости и примыкающих друг к другу торцовыми поверхностями (рис. 13, а). Оно наиболее распространено в сварных конструкциях, поскольку имеет ряд преимуществ перед другими видами соединений. Условные обозначения стыковых соединений: С1 - С48.

Угловое соединение представляет собой сварное соединение двух элементов, расположенных под углом друг к другу и сваренных в месте приложения их кромок (рис.13, б). Условные обозначения угловых соединений: У1 - У10.

Тавровое соединение - это соединение, в котором к боковой поверхности одного элемента примыкает под углом и приварен торцом другой элемент. Как правило, угол между элементами прямой (рис. 13, в). Условные обозначения тавровых соединений: Т1 - Т8.

Нахлесточное соединение представляет собой сварное соединение, в котором соединяемые элементы расположены параллельно и частично перекрывают друг друга (рис. 13, г). Условные обозначения: h2 - Н9.

 

Торцовое соединение - это соединение, в котором боковые поверхности элементов примыкают друг к другу (рис. 13, д). Условных обозначений в стандарте пока нет.

Сварной шов представляет собой участок сварного соединения, образовавшийся в результате кристаллизации расплавленного металла сварочной ванны.

Сварочная ванна - это часть металла сварного шва, находящаяся в момент сварки в расплавленном состоянии. Углубление, образующееся в сварочной ванне под действием дуги, называют кратером. Металл соединяемых частей, подвергающихся сварке, называют основным металлом. Металл, предназначенный для введения в сварочную ванну в дополнение к расплавленному основному, называют присадочным металлом. Переплавленный присадочный металл, введенный в сварочную ванну или наплавленный на основной металл, называют наплавленным металлом. Сплав, образованный переплавленным основным или переплавленным основным и наплавленным металлами, называют металлом шва. В зависимости от параметров и формы подготовки свариваемых кромок деталей доли участия основного и наплавленного металлов в формировании шва могут существенно изменяться (рис. 14):

 

В зависимости от доли участия основного и присадочного металлов в формировании шва его состав может изменяться. Торцовые поверхности деталей, подлежащие нагреву и расплавлению при сварке, называют свариваемыми кромками. Для обеспечения равномерного проплавления свариваемых кромок в зависимости от толщины основного металла и способа сварки им придают наиболее оптимальную форму, выполняя предварительно подготовку кромок. На рис. 15 приведены применяемые формы подготовки кромок для различных типов сварных соединений. Основными параметрами формы подготовленных кромок и собранных под сварку соединений являются е, R, b, a, с - высота отбортовки, радиус закруглений, зазор, угол скоса, притупление кромок.

 

Отбортовку кромок применяют при сварке тонкостенных деталей. Для толстостенных деталей применяют разделку кромок за счет их скоса, т.е. выполнение прямолинейного или криволинейного наклонного скоса кромки, подлежащей сварке. Нескошенная часть кромки с носит название притупления кромки, а расстояние b между кромками при сборке - зазором. Острый угол b между плоскостью скоса кромки и плоскостью торца называют углом скоса кромки, угол a между скошенными кромками - углом разделки кромок.

Значения параметров формы подготовки кромок и их сборки регламентируются ГОСТ 5264-80. В зависимости от типов сварных соединений различают стыковые и угловые сварные швы. Первый вид швов используется при получении стыковых сварных соединений. Второй вид швов используется в угловых, тавровых и нахлесточных соединениях.

Russia War Crimes

В чем еще вам лгут российские политики

Это не война, это только спецоперация

Война — это вооруженный конфликт, цель которого — навязать свою волю: свергнуть правительство, заставить никогда не вступить в НАТО, отобрать часть территории. Обо всем этом открыто заявляет Владимир Путин в каждом своем обращении. Но от того, что он называет войну спецоперацией, меньше людей не гибнет.

Россия хочет только защитить ЛНР и ДНР

Российская армия обстреливает города во всех областях Украины, ракеты выпускали во Львов, Ивано-Франковск, Луцк и другие города на западе Украины.

На карте Украины вы увидите, что Львов, Ивано-Франковск и Луцк — это больше тысячи километров от ЛНР и ДНР. Это другой конец страны.

Это места попадания ракет 25 февраля. За полтора месяца их стало гораздо больше во всей Украине.

Центр Украины тоже пострадал — только первого апреля российские солдаты вышли из Киевской области. Мы не понимаем, как оккупация сел Киевской области и террор местных жителей могли помочь Донбасу.

Мирных жителей это не коснется

Это касается каждого жителя Украины каждый день.

Десяти миллионам украинцев пришлось бросить родные города. Снаряды попадают в наши жилые дома.

23 апреля, в Пасхальные выходные, российские солдаты выпустили несколько ракет в жилой массив Одессы. Погибло 8 человек, 18 ранены.

Это был обычный жилой дом в Одессе. За сотни километров от так называемых ЛНР и ДНР.

Среди погибших целые семьи. Одним выстрелом солдаты рф убили бабушку, маму и трехмесячную девочку Киру. Выжил только отец, который незадолго до обстрела вышел в  магазин. Когда вернулся — на  месте квартиры была дыра, а вся его семья мертва.

В этом же доме погибли Людмила и Богдан, молодая пара. Людмила была беременна.

За два месяца войны российские военные убили 3 818 мирных жителей. Более 4 тысяч человек были ранены. Это только официальные данные, которые передают больницы и морги.

В статистику не входят убитые жители Мариуполя, тела которых остаются под завалами города или сжигаются оккупантами в передвижных крематориях. По предварительным оценкам в Мариуполе солдаты рф убили от 10 000 до 20 000 украинцев.

Российская армия обстреливает пункты гуманитарной помощи и «зеленые коридоры».

Во время эвакуации мирного населения из Ирпеня семья попала под минометные обстрелы — все погибли.

Среди убитых много детей. Под обстрелы уже попадали детские садики и больницы.

Мы вынуждены ночевать на станциях метро, боясь обвалов наших домов. Украинские женщины рожают детей в метро, подвалах и бомбоубежищах, потому что в роддомы тоже стреляют.

Это груднички, которых вместо теплых кроваток приходится размещать в подвалах. С начала войны Украине родилось больше 15 000 детей. Все они еще ни разу в жизни не видели мирного неба.

В Украине — геноцид русскоязычного народа, а Россия его спасает

В нашей компании работают люди из всех частей Украины: больше всего сотрудников из Харькова, есть ребята из Киева, Днепра, Львова, Кропивницкого и других городов. 99% сотрудников до войны разговаривали только на русском языке. Нас никогда и никак не притесняли.

Но теперь именно русскоязычные города, Харьков, Мариуполь, Россия пытается стереть с лица земли.

Это Мариуполь. В подвалах и бомбоубежищах Мариуполя все еще находятся сто тысяч украинцев. К сожалению, мы не знаем, сколько из них сегодня живы

Украинцы сами в себя стреляют

У каждого украинца сейчас есть брат, коллега, друг или сосед в ЗСУ и территориальной обороне. Мы знаем, что происходит на фронте, из первых уст — от своих родных и близких. Никто не станет стрелять в свой дом и свою семью.

Украина во власти нацистов, и их нужно уничтожить

Наш президент — русскоговорящий еврей. На свободных выборах в 2019 году за него проголосовало три четверти населения Украины.

Как у любой власти, у нас есть оппозиция. Но мы не избавляемся от неугодных, убивая их или пришивая им уголовные дела.

У нас нет места диктатуре, и мы показали это всему миру в 2013 году. Мы не боимся говорить вслух, и нам точно не нужна ваша помощь в этом вопросе.

Украинские семьи потеряли полтора миллиона родных, борясь с нацизмом во время Второй мировой. Мы никогда не выберем нацизм, фашизм или национализм как наш путь. И нам не верится, что вы сами можете всерьез так думать.

Это месть за детей Донбасса

Российские СМИ любят рассказывать о кровожадных украинских детоубийцах. Но «распятый мальчик в трусиках» и «мальчик — мишень для ракет ВСУ» — это легенды, придуманные российскими пропагандистами. Нет ни единого доказательства подобным страшилкам, только истории с государственных российских телеканалов.

Однако допустим, что ваши солдаты верят в эти легенды. Тогда у нас все равно появляется вопрос: зачем, мстя за детей Донбасса, они убивают детей Донбасса?

8 апреля солдаты рф выпустили две ракеты в вокзал Краматорска, где четыре тысячи украинцев ждали эвакуационные поезда. Ракетным ударом российские солдаты убили 57 человек, из которых 5 — дети. Еще 16 детей были ранены. Это дети Донбасса.

На одной из ракет остались остатки надписи «за детей».

Сразу после удара российские СМИ сообщили о выполненном задании, но когда стало известно о количестве жертв — передумали и сказали, что у рф даже нет такого оружия.

Это тоже ложь, вот статья в российских СМИ про учения с комплексом Точка-У. Рядом скриншот из видео с военным парадом, на котором видна Точка-У.

Еще один фейк, который пытались распространить в СМИ: «выпущенная по Краматорску ракета принадлежала ВСУ, это подтверждает ее серийный номер». Прочитайте подробное опровержение этой лжи.

Посмотрите на последствия удара. Кому конкретно из этих людей мстили за детей Донбасса?

Классификация сварочных дуг | Машкрепеж

Люди применяют сварку вот уже почти полтора столетия. А изучать это метод соединения различных объектов начал еще известный итальянский ученый Алессандро Дж. Вольта. На основе, в том числе, и его научных трудов был создан первый аппарат для выполнения сварки. Генерирование электрического разряда происходит в момент КЗ (здесь и далее Короткое Замыкание), возникшего между обрабатываемой поверхностью и концом расходного элемента (здесь и далее под таковым подразумевается электрод). На аппарат для сварки подается электроэнергия. Благодаря ее трансформированию в энергию другого вида – тепловую – возникает ванна расплава. Это является обязательным условием формирования однородного металлического шва. По результатам детального анализа ВАХ (сокращение словосочетания Вольтамперная Характеристика) ученым удалось превратить сварку, практически, в совершенный процесс соединения элементов создаваемой конструкции. Были разработаны современные приборы, поддерживающие стабильное состояние сварочной электродуги.

Сварочная дуга. Что это?

Продуцируемая сварочным аппаратом электродуга является ничем иным, нежели проводником, сформированным ионизированными частицами. Его существование на протяжении определенного временного интервала обеспечивается благодаря поддержке электрического поля. Подобному разряду, образующемуся в газе, который способен к ионизации, характерны:

Учебники и справочники по сварке содержат следующее определение данному явлению: она представляет собой разряд, происходящий в образовавшейся плазме и носящий продолжительный характер. Сама же плазма является конгломератом продуктов испарения металлов, образующихся под влиянием весьма высокой температуры и на которые оказывают воздействие подвергнутые ионизации защитные газы, присутствующие в атмосфере.

Структура и температурные характеристики сварочной электродуги

Довести температуру металлической заготовки за очень непродолжительный отрезок времени до точки плавления вполне возможно, но по законам физики для этого необходимо сформировать мощную электродугу. Ее основными рабочими характеристиками являются:

  • вольтаж – величина напряжения, отображенная в вольтах;

  • ампераж – сила электротока, значение которой представлено в амперах;

  • уровень плотности потока корпускул/частиц-носителей заряда.


С точки зрения электротехники дуговой столб является проводником между противоположными полюсами (имеются в виду плюсовой и минусовой). Материализован он посредством газовой среды. Особенности столба – высокое значение сопротивления, способность продуцировать искры и светиться.

Проведение тщательного анализа структуры электродуги позволит выяснить, как на металл оказывает воздействие температура. В общем случае ее длина относительно небольшая – колеблется в районе отметки 5 сантиметров. Строение электродуги включает 3 области:

  • сам столб. Это и есть видимый человеческим глазом светящийся отрезок;

  • анодная область – примерно 10 мкм;

  • катодная область – около 1 мкм.

Температура сварочной электродуги определяется потоком формируемых на катоде свободных электронов. Уровень нагрева самого катода достигает 38 процентов от температуры образовавшейся плазмы. Электроны – частицы с отрицательным зарядом – перемещаются в газовой среде в сторону анода, а элементы-носители положительного заряда движутся к катоду. В целом же наблюдается такая картина: столб на протяжении всего времени своего существования нейтрален.

Внутри столба температура частиц может достигать 10000°С. Они при контакте с металлом обеспечивают его разогрев до 2350°С. Точку проникновения электронов ученые-физики называют анодным пятном. В сравнении с другим пятном, называемым катодным, его температурный показатель больше на 6 процентов. Плазма излучает волны в инфракрасном, в видимом и УФ-диапазонах. Но это излучение способно нанести вред коже и органам зрения человека. Поэтому сварщики обязаны по технике безопасности работать в специальных защитных средствах.

Разновидности сварочной электродуги

Подразделение сварочной электродуги на виды осуществляется на основе нескольких признаков. Так, по критерию «Тип электротока и расположение электродов в рабочей зоне» формируются следующие группы:

  • прямого действия. Это когда разряд расположен параллельно по отношению к продольной оси электрода и перпендикулярно относительно обрабатываемой металлической поверхности;

  • косвенного действия. Здесь электрод наклонен к поверхности заготовки под углом, равным 40,0°-60,0°. Разряд проходит между этим расходным элементом и металлом;

  • комбинированная. Представляет собой сочетание вышеуказанных дуг. В качестве примера можно привести 3-фазную дугу. Ее 2 дуги осуществляют электрическую связь электродов с объектом сварки. Третья же горит между двумя изолированными один от другого электродам.


Плазменный столб зависимости от его состава бывает:
  • открытым. Формируется в газах атмосферы. В качестве подпитывающей среды выступают химические соединения, испаряющиеся из объекта сварки и обмазки электрода;

  • закрытым. Продуцируется под флюсом. Обязательное условие – наличие газообразной фазы, образованной частицами, являющимися продуктами испарения флюса, расходного элемента – электрода, и самого металла, находящегося в жидком агрегатном состоянии;

  • с подачей защитной смеси. Ею может быть газ, обладающий инертными свойствами, и т.д.

Еще один признак, на основе которого эксперты подразделяют электродугу на виды, это тип электрода. Для сварки задействуются следующие расходные элементы:

  • стальные, обмазка которых содержит включения, обеспечивающие ионизацию газа;

  • произведенные из угля либо графита;

  • тугоплавкие, изготовленные из металла вольфрам (элемент W).

По критерию «время воздействия» сварочная электродуга бывает импульсной, а также постоянной.

Условия горения

В основе сварочного процесса находится трансформирование электроэнергии в энергию тепловую. Время удержания сформированного в его ходе столба ничем не ограничено, если ионизация газа происходит очень быстро. При сваривании заготовки подвергаются нагреву, контактирующий с ними воздух становится горячим и обогащается испаряемыми веществами. Альтернативным способом является специальная подача в рабочую область газа, из молекул или атомов которого под внешним воздействием образуются ионы. Наиболее хорошо ионизируются частицы мягких щелочных металлов (входят в первую группу периодической таблицы), а также щелочноземельных металлов (это уже представители второй группы периодической таблицы). Для перевода их в активное состояние, достаточно начать пропускать электроток.

Иным обязательным условием надежного поддержания сварочного столба является высокая стабильная во времени температура катода. Ее величина – характеристика производная от площади самого катода, а также его химического состава. Без источника электроэнергии здесь не обойтись. Когда выполняются сварочные работы температурный показатель катодной зоны достигает 7000°С.

Как образуется электродуга

Сварочная электродуга является ничем другим, нежели электрическим разрядом. Появляется она, когда происходит замыкание цепи. В момент соприкосновения электрода с подвергаемым сварке элементом конструкции начинает продуцироваться в избыточном объеме тепловая энергия. В месте контакта металл плавится. Из-за явления притягивания расплава к наконечнику расходного элемента образуется тонкая шейка. Под воздействием мощного электрического поля она, практически, моментально распыляется. Это обусловливает ионизацию молекул газа. В результате данного процесса формируется защитное облако, обеспечивающее свободное передвижение электронов.

Направленность потока определяется типом тока. Поджечь электродугу можно на электротоке, имеющем и постоянную, и переменную величину, а также любой полярности – как прямой, так и обратной. Частота разжигания и потухания дуги – характеристика производная от совокупности выбранных работником параметров тока.

Что влияет на мощность электродуги

Показатели мощности сварочной электродуги зависят от следующих основных факторов:

  • питающее напряжение. Возрастание напряжения питания приводит к увеличению мощности дуги. Однако диапазон изменения значений последнего параметра неширокий.  Имеются также ограничения, касающиеся размеров электродов;

  • сила тока. Зависимость прямо пропорциональная.  С увеличением этого параметра стабильность горения электродуги повышается;

  • зависимость мощности и численного значения напряжения образовавшейся плазмы тоже прямо пропорциональная.

Длина дуги – это расстояние от расходного элемента до свариваемой поверхности в ходе выполнения работ. Данный показатель оказывает влияние на объем генерируемого тепла.

Скорость расплавления металла определяется мощностью электродуги. Этот параметр очень важен. Ведь о него зависит, сколько времени потребуется на соединение металлических деталей. Температура в области плавления изменяется силой тока. Если она достаточно большая, не будет гаснуть электродуга даже значительной длины. Заниматься настройками ампеража в ходе сварки требуется весьма редко.

ВАХ сварочной дуги

Аббревиатура ВАХ расшифровывается так: вольтамперная характеристика. Она отображает взаимосвязь параметров питания.

По ВАХ можно узнать время стабильного горения электродуги, ее мощность, а также условия затухания.

Динамика, с которой изменяются вольтамперные показатели, отображает варьирование длины электродуги, когда она нестабильна. И наоборот, статическая ВАХ показывает, как зависит от силы тока величина напряжения электродуги в период постоянства ее длины. Выше представленный график, поделенный на 3 сегмента, выражает ее свойства.

Падающая ВАХ

Возрастание силы тока сопровождается резким падением напряжения (участок «1» на графике). Обусловлено это формированием столба. С увеличением плазменного потока его электропроводимость изменяется. Причем в сторону увеличения.

Жесткая ВАХ

Ключевая особенность этого участка (позиция «2» на графике) – пониженное напряжение, сочетающееся с неизменной во времени плотностью тока. Величина силы тока варьируется в пределах 100В-1000В. Растет диаметр электродугового столба, а его сопротивление, соответственно, падает. Площадь пятен, и анодного (знак «+»), и катодного (знак «-»), возрастает пропорционально.

Растущая ВАХ

На графике это участок «3». Отличается стабильностью катодного пятна. Его размер – величина производная от диаметра расходного элемента. Сопротивление сварочного столба увеличивается. Также наблюдается рост напряжения на электродуге.

Отдельно необходимо отметить следующие моменты:

  • когда для проведения ручной электросварки применяются плавящиеся либо неплавящиеся расходные элементы, вольтамперные характеристики не переходят на третий участок графика. Для данного случая актуальны лишь первые два;

  • показатели участков графика под номерами 2 и 3 описывают механизированную сварку, предусматривающую применение флюсов;

  • параметры сварки в защитной среде с использованием плавящегося электрода отображены на третьем сегменте графика.

Теперь несколько слов о работе сварочного оборудования на переменном токе. Электродуга возбуждается на пике разжигания во всех полупериодах. Ее затухание наблюдается в момент перехода синусоидой нулевой отметки. Активные пятна прекращают нагреваться. Поддержка в стабильном состоянии эндотермического процесса формирования ионов из элементарных нейтральных частиц газов осуществляется испарениями металлов щелочной группы, присутствующих в обмазке электродов. Процесс розжига электродуги в защитной среде на электротоке с изменяющейся во времени величиной выполняется трудней в сравнении со сваркой на токе постоянном.

Когда выбирается аппарат для проведения работ определенного вида, необходимо принимать во внимание непосредственную зависимость ВАХ от вольтамперных параметров внешнего порядка. Например, ручная электродуговая сварка будет выполнена успешно при подводе питания, отличающегося падающей ВАХ, то есть с повышенным значением напряжения на ХХ. При этом у работника будет иметься возможность изменять длину электродуги, используя регулятор ампеража.

Величина силы тока, фиксируемая при КЗ в ходе расплавления расходного элемента, превышает значение этого показателя столба от 20 до 50 процентов. Сварка с помощью плавящихся электродов – наиболее оптимальный вариант в случае применения дуги размыкания. И здесь нужно знать один момент. Формулируется он так: для розжига электродуги вольфрамовым либо углеродным расходным элементом будет очень кстати вспомогательный/дополнительный разряд.

Значительная сила тока, возникающая при КЗ, может привести к прожигу заготовки. Происходит КЗ в момент падения капли расплава расходного элемента. После этого параметры резко обретают первоначальные значения. В результате наблюдается возрастание ампеража, и сила тока мгновенно достигает уровня, фиксируемого при КЗ. Мостик, сформировавшийся между электродом и металлической заготовкой, очень быстро перегорает. Это приводит к очередному возбуждению электродуги. Все вышеописанные изменения осуществляются в электродуговом столбе, практически, моментально. Оборудование должно отреагировать на них за этот короткий временной интервал, чтобы рабочие характеристики стабилизировались.

Особенности электродуги

Широкие пределы изменения параметров обусловливает совместимость электродуги с обычными плавящимися расходными элементами, а также с тугоплавкими. В результате ее воздействия заготовка очень быстро разогревается, а затем формируется ванна расплава. Уровень потерь, появляющихся в ходе преобразования электрической энергии в энергию тепловую, – минимальный. Хотя природу электродуги можно сопоставить с разрядами других разновидностей, у нее имеются свои особенности:

  • саморегулирующиеся вольтамперные характеристики, а также мощность;

  • пространственная устойчивость;

  • четкие контуры;

  • неравномерность распределения между обоими полюсами электрического поля;

  • незначительное снижение напряжения на аноде (знак «+») и катоде (знак «-»). Данное явление мало связано с изначально установленным вольтажом;

  • сильный ток продуцирует высокую температуру.

Зажигание дуги можно осуществлять двумя способами: кратковременным прикасанием либо путем чирканья.

Заключение

Единица измерения скорости перемещения дугового разряда – метр/минута. При выборе конкретной величины данного параметра следует учитывать следующие моменты. Во-первых, скорость нужно уменьшать с увеличением толщины свариваемых объектов. Во-вторых, увеличение сварочного тока должно сопровождаться возрастанием скорости перемещения. Но это условие актуально, когда толщина металла задана.


Товары каталога:



Please enable JavaScript to view the comments powered by Disqus. comments powered by

Виды сварочных дуг

Сеть профессиональных контактов специалистов сварки

По наиболее важным техническим признакам различают следующие основные группы сварочных дуг:

1 2 3 4 5 6 7
Дуги прямого действия С плавящимися электродами Дуги в парах металлов Свободные дуги Установившиеся дуги Открытые дуги Дуги постоянного тока
Дуги косвенного действия С неплавящимися электродами Дуги в газах Сжатые дуги Неустановившиеся дуги Закрытые дуги Дуги переменного тока

Входящие в группы виды сварочных дуг характеризуются следующими основными особенностями.

1. В дугах прямого действия подлежащие нагреву или плавлению металлы являются электродами разряда и им передается кинетическая и потенциальная энергия заряженных частиц. Поэтому электроды весьма интенсивно нагреваются и плавятся.

Дуги косвенного действия располагаются у поверхностей подлежащих нагреву или плавлению изделий. Электродами таких дуг служат стержни из графита или вольфрама, не соединенные электрически с изделиями. Нагрев и плавление изделий происходит лишь за счет кинетической энергии сталкивающихся с ними частиц газа. Обычно такой нагрев мало эффективен, поэтому дуги косвенного действия применяются в тех случаях, когда требуется сравнительно небольшая теплопередача от дуги к изделиям.

2. В дугах с плавящимися электродами оба электрода в процессе осуществления сварочного процесса расплавляются, поставляя металл в общую ванну. Если один из электродов, будучи тугоплавким — вольфрамовым или графитовым, не поставляет металл в общую ванну, то дуга называется дугой с неплавящимся электродом. При увеличении тока дуги тугоплавкий электрод также может расплавиться, поэтому разновидности дуг этой группы определяются не только материалом электродов, но и режимом их горения.

3. Большинство плавящихся электродов дуги интенсивно испаряется. Пары, двигаясь от электродов в виде струи, почти полностью оттесняют из области разряда другие газы. Поэтому пары электродов определяют основные свойства таких дуг, что и обусловило их название. Когда же используются слабо испаряющиеся вольфрамовые, графитовые или искусственно охлаждаемые водой медные электроды, состав газа разрядной области с достаточной точностью определяется ее атмосферой. Последнюю образуют л ибо защитные газы — аргон, гелий, водород, СO2 и др., подаваемые в зону дуги для ограждения металла от воздействия воздуха, либо воздух при отсутствии такой защиты. Однако по мере увеличения тока слабо испаряющиеся электроды могут испаряться интенсивно, а «дуга в газах» может стать «дугой в парах», поэтому и в этой группе разновидности дуг также определяются их режимом.

4. Дуга считается свободной, если ее развитие в пространстве не ограничено до пределов, определяемых естественными свойствами дуги. При наличии таких ограничений дуга называется сжатой. Дугу сжимают, помещая ее в узких каналах и щелях, ограничивая размеры электродов, обдувая дугу струями газов или жидкостей и т. д.

5. Дуга считается установившейся, если длительность ее существования при заданных условиях заметно превышает время протекания в ней переходных процессов и параметры дуги уже не меняются во времени. Изменения силы тока, состава атмосферы, расстояния между электродами, положения в пространстве и т. д. характеризуют неустановившиеся дуги. Однако при сравнительно медленном изменении перечисленных факторов, когда каждому их мгновенному значению соответствуют параметры дуги, близкие к установившимся при этих мгновенных значениях, такими изменениями можно пренебречь и дуги считать установившимися. Таким образом разделение дуг анализируемой группы на два вида требует их тщательного изучения.

6. Дуга считается открытой, если вокруг нее отсутствуют преграды, кроме самих электродов, исключающие или затрудняющие циркуляцию газа в околодуговом пространстве, или задерживающие излучение дуги. В случае полного ограждения дуги от окружающего пространства она становится закрытой. Примером такой дуги является дуга под флюсом. Ее атмосфера состоит только из паров электродов и ограждения — флюса. Циркуляция газовых потоков в такой дуге ограничена, излучение дуги в пространство не проникает. Возможны полузакрытые дуги и т. д.

7. Для дуг постоянного тока характерны неизменность направления тока и, как правило, небольшие колебания его силы, обусловливаемые процессами в дуге.

В дугах переменного тока происходят непрерывные изменения направления и силы тока в соответствии с изменениями э. д. с. источника и процессами в дуге. Такие дуги угасают каждый раз при переходе тока через нуль и возобновляются снова в начале каждого полупериода питающего их переменного тока.

Реальные сварочные дуги характеризуются одновременно несколькими перечисленными особенностями.

Для примера на сравним дуги с плавящимися электродами в аргоне и углекислом газе и их типичную осциллограмму. На концах электродов при фотграфировании видны капли, меняющиеся, как показывают наблюдения, в объеме и по положению в пространстве. Периодически они перекрывают весь разрядный промежуток, вызывая короткое замыкание электродов и устранение разряда. При этом напряжение падает почти до нуля, а ток растет по законам, определяемым свойствами электрической цепи. Частота коротких замыканий и их длительность не постоянны После замыканий снова возбуждается дуга и т. д.

Получается, что сварочная дуга с плавящимися электродами является неустановившейся дугой как по длине разрядного промежутка, так по режиму питания и положению в пространстве. В рассматриваемом случае она, возможно, несколько сжата струями защитных газов и содержит в своем составе некоторую часть паров электродов и т. д. Естественно, что изучение таких дуг весьма затруднительно. При их описании и, тем более, изложении теории неизбежна некоторая схематизация и идеализация процессов и условий существования разряда.

Copyright. При любом цитировании материалов Cайта, включая сообщения из форумов, прямая активная ссылка на портал weldzone.info обязательна.

Длина сварочной дуги что это такое | Сварка для Начинающих

Всех приветствую . Если ты начал интересоваться сваркой , то эта статья будет весьма кстати . Сегодня будем говорить о длине дуги . Длина сварочной дуги это промежуток между электродом и деталью в котором происходит электродуговой разряд .

яндекс картинки

яндекс картинки

Длина дуги зависит от диаметра электрода и может быть выбрана в пределах Lдуги = 0.5d - 1.2 d , где d - это диаметр электрода . Для примера возьмем электрод диаметром 3 мм , тогда получается что разбег длины сварочной дуги может составить от 1.5 мм до 3.6 мм . Для получения качественного сварного шва и хорошего проплавления электрод нужно держать как можно ближе к детали . Условно длину дуги разделяют на 3 группы - короткая дуга ( 0.5 - 1 d электрода ) , средняя ( 1-1.2 d электрода ) , длинная дуга ( более 1.5 d электрода ) . Короткой дугой варят швы в нижнем положении ,горизонтальные на вертикальной плоскости и вертикальные , потолочные и корневые швы . Короткую дугу используют в 90 процентах случаев сварки . На короткой дуге получается хорошая защита сварочной ванной и хорошее проплавление детали .

яндекс картинки

яндекс картинки

Среднюю дугу используют для сварки и наплавки в нижнем положении . У дуги средней длины большая площадь нагрева детали и меньше глубина проплавления . А вот длинную дугу использовать вообще не рекомендуется . Здесь можно получить весь букет дефектов сварного шва и этот шов будет весьма сомнительного качества .

яндекс картинки

яндекс картинки

А как вручную определить и выставить эту длину дуги ? Тут только одна рекомендация - немного попрактиковаться и поэкспериментировать . Вы быстро поймете оптимальную длину дуги по качеству получаемого шва и удобству сварки на этой длине дуги , да и еще по звуку сварки - чам длиннее дуга тем громче будет звук . Только на практике , ведь никаких щупов для зазора сварочной дуги пока еще не придумали !

яндекс картинки

яндекс картинки

Надеюсь статья была полезной! Если ты решил самостоятельно осваивать Ручную дуговую сварку, то просто кликай на этот текст, чтобы перейти на главную страницу канала, где можно сразу подписаться и выбрать для себя наиболее интересные статьи!

Определение сварочной дуги, ее строение, условия зажигания и горения. Сварка

Определение сварочной дуги, ее строение, условия зажигания и горения

Электрической сварочной дугой называют устойчивый электрический разряд в сильно ионизированной смеси газов и паров материалов, происходящий при давлении, близком к атмосферному, используемом при сварке, и характеризуемый высокой плотностью тока и высокой температурой.

Температура в столбе сварочной дуги достигает 5 000–12000 °C и зависит от плотности тока, состава газовой среды дуги, материала и диаметра электрода. А потому сварочная дуга является мощным концентрированным источником теплоты. Электрическая энергия, потребляемая дугой, в основном превращается в тепловую энергию.

В столбе сварочной дуги протекают следующие процессы:

1. Столб дуги заполнен заряженными частицами – электронами и ионами. В нем присутствуют также и нейтральные частицы – атомы и даже молекулы паров веществ, из которых сделаны электроды. Под действием электродинамических сил частицы перемещаются. Скорость их перемещения различна. Быстрее всего перемещаются электроны. Они легко разгоняются и, сталкиваясь с атомами и ионами, передают им свою энергию. Столкновения электронов с атомами могут быть упругими и неупругими. При упругих столкновениях атомы начинают двигаться быстрее – увеличивается их кинетическая энергия. В результате повышается температура плазмы дуги.

2. Электрон, который в электрическом поле приобрел достаточно большую энергию, является источником неупругих столкновений. Столкнувшись с атомом, он возбуждает его, а когда удар достаточно силен, то и выбивает из атома его собственные электроны.

Энергию, которая должна быть сообщена электрону для ионизации какого-либо атома, выражают в электронвольтах (эВ) и называют потенциалом ионизации. Величина потенциала ионизации зависит от строения атома. Чем меньше номер группы и больше номер периода в таблице элементов Менделеева, тем меньше энергии необходимо затратить для ионизации. Наименьшим потенциалом ионизации (3,9 эВ) обладает атом цезия, поскольку он самый тяжелый из всех щелочных металлов. Самый легкий из инертных газов – элемент последней, нулевой группы – гелий обладает наивысшим потенциалом ионизации (24,5 эВ).

Энергия, расходуемая на диссоциацию (разделение) различных молекул, также различна. Так, например, для диссоциации молекулы водорода необходимо затратить 4,48 эВ, фтора – 1,6 эВ, а углекислого газа – 9,7 эВ. Эти величины имеют для сварщиков особое значение. При разработке электродных покрытий, флюсов и проволок приходится учитывать, молекулы каких веществ диссоциируют раньше, а каких – позже, какие элементы ионизируются легче, а какие – труднее, и сколько для этого потребуется энергии.

В зависимости от числа электродов и способов включения электродов и свариваемой детали в электрическую цепь различают следующие виды сварочных дуг (рис. 46):

1. Прямого действия, когда дуга горит между электродом и изделием.

2. Косвенного действия, когда дуга горит между двумя электродами, а свариваемое изделие не включено в электрическую цепь.

3. Трехфазную дугу, возбуждаемую между двумя электродами, а также между каждым электродом и основным металлом.

Рис. 46.

Виды сварочных дуг:

а – прямого; б – косвенного; в – комбинированного действия (трехфазная)

По роду тока различают дуги, питаемые переменным и постоянным током. При использовании постоянного тока различают сварку на прямой и обратной полярности.

При прямой полярности электрод подключается к отрицательному полюсу и служит катодом, а изделие – к положительному полюсу и служит анодом.

При обратной полярности электрод подключается к положительному полюсу и служит анодом, а изделие – к отрицательному и служит катодом.

В зависимости от материала электрода различают дуги между неплавящимися электродами (угольными, вольфрамовыми) и плавящимися металлическими электродами.

Сварочная дуга обладает рядом физических и технологических свойств, от которых зависит эффективность использования дуги при сварке.

К физическим свойствам относятся электрические, электромагнитные, кинетические, температурные, световые.

К технологическим свойствам относятся мощность дуги, пространственная устойчивость, саморегулирование.

Электрическим разрядом в газе называют электрический ток, проходящий через газовую среду благодаря наличию в ней свободных электронов, а также отрицательных и положительных ионов, способных перемещаться между электродами под действием приложенного электрического поля (разности потенциалов между электродами.

Сварка дугой переменного тока имеет некоторые особенности. Вследствие того, что мгновенные значения тока переходят через нуль 100 раз в 1 с, меняет свое положение катодное пятно, являющееся источником электронов, ионизация дугового промежутка менее стабильна и сварочная дуга менее устойчива по сравнению с дугой постоянного тока.

Общепринятой мерой повышения стабилизации сварочной дуги переменного тока является включение в сварочную цепь последовательно с дугой индуктивного сопротивления. Последовательное включение в сварочную цепь катушек со стальным сердечником (дросселей) позволяет вести сварочные работы металлическими электродами на переменном токе при напряжении сварочного трансформатора 60–65 В.

Процесс, при котором из нейтральных атомов и молекул образуются положительные и отрицательные ионы, называют ионизацией. При обычных температурах ионизацию можно вызвать, если уже имеющимся в газе электронам и ионам сообщить при помощи электрического поля большие скорости. Обладая большой энергией, эти частицы могут разбивать нейтральные атомы и молекулы на ионы. Кроме того, ионизацию можно вызвать световыми, ультрафиолетовыми, рентгеновскими лучами, а также излучением радиоактивных веществ.

В обычных условиях воздух, как и все газы, обладает весьма слабой электропроводностью. Это объясняется малой концентрацией свободных электронов и ионов в газах. Поэтому, чтобы вызвать в газе мощный электрический ток, т. е. образовать электрическую дугу, необходимо ионизировать воздушный промежуток (или другую газообразную среду) между электродами.

Ионизацию можно произвести, если приложить к электродам достаточно высокое напряжение, тогда имеющиеся в газе свободные электроны и ионы будут разгоняться электрическим полем и, получив энергию, смогут разбить нейтральные молекулы на ионы.

Однако при сварке, исходя из правил техники безопасности, нельзя пользоваться высокими напряжениями. Поэтому применяют другой способ. Так как в металлах имеется большая концентрация свободных электронов, то надо извлечь эти электроны из объема металла в газовую среду и затем использовать для ионизации молекул газа.

Существует несколько способов извлечения электронов из металлов. Из них для процесса сварки имеют значения два: термоэлектронная и автоэлектронная эмиссии.

Во время термоэлектронной эмиссии происходит «испарение» свободных электронов с поверхности металла благодаря высокой температуре. Чем выше температура металла, тем большее число свободных электронов приобретают энергии, достаточные для преодоления «потенциального барьера» в поверхностном слое и выхода из металла.

Во время автоэлектронной эмиссии извлечение электронов из металла производится при помощи внешнего электрического поля, которое несколько изменяет потенциальный барьер у поверхности металла и облегчает выход тех электронов, которые внутри металла имеют достаточно большую энергию и могут преодолеть этот барьер.

Ионизацию, вызванную в некотором объеме газовой среды, принято называть объемной.

Объемная ионизация, полученная благодаря нагреванию газа до очень высоких температур, называется термической. При высоких температурах значительная часть молекул газа обладает достаточной энергией для того, чтобы при столкновениях могло произойти разбиение нейтральных молекул на ионы. Кроме того, с повышением температуры увеличивается общее число столкновений между молекулами газа. При очень высоких температурах в процессе ионизации начинает также играть заметную роль излучение газа и раскаленных электродов.

Ионизация газовой среды характеризуется степенью ионизации, т. е. отношением числа заряженных частиц в данном объеме к первоначальному числу частиц (до начала ионизации). При полной ионизации степень ионизации будет равна единице.

При температуре 6000–8000 °C такие вещества, как калий, натрий, кальций, обладают достаточно высокой степенью ионизации. Пары этих элементов, находясь в дуговом промежутке, обеспечивают легкость возбуждения и устойчивое горение дуги. Это свойство щелочных металлов объясняется тем, что атомы этих металлов обладают малым потенциалом ионизации. Поэтому для повышения устойчивости горения электрической дуги эти вещества вводят в зону дуги в виде электродных покрытий или флюсов.

Электрическая дуга постоянного тока возбуждается при соприкосновении торца электрода и кромок свариваемой детали. Контакт в начальный момент осуществляется между микровыступами поверхностей электрода и свариваемой детали. Высокая плотность тока способствует мгновенному расплавлению этих выступов и образованию пленки жидкого металла, которая замыкает сварочную цепь на участке «электрод – свариваемая деталь». При последующем отводе электрода от поверхности детали на 2–4 мм пленка жидкого металла растягивается, а сечение уменьшается, вследствие чего возрастает плотность тока и повышается температура металла.

Эти явления приводят к разрыву пленки и испарению вскипевшего металла. Возникшие при высокой температуре интенсивные термоэлектронная и автоэлектронная эмиссии обеспечивают ионизацию паров металла и газов межэлектродного промежутка. В образовавшейся ионизированной среде возникает электрическая сварочная дуга. Процесс возбуждения дуги кратковременен и осуществляется в течение долей секунды.

В установившейся сварочной дуге различают три зоны: катодную, анодную и столба дуги.

Катодная зона начинается с раскаленного торца катода, на котором расположено так называемое катодное пятно. Отсюда вылетает поток свободных электронов, осуществляющих ионизацию дугового промежутка. Плотность тока на катодном пятне достигает 60–70 А/мм2 к катоду устремляются потоки положительных ионов, которые бомбардируют и отдают ему свою энергию, вызывая нагрев до температуры 2500–3000 °C.

Анодная зона расположена у торца положительного электрода, в котором выделяется небольшой участок, называемый анодным пятном. К анодному пятну устремляются и отдают свою энергию потоки электронов, разогревая его до температуры 2500–4000 °C.

Столб дуги, расположенный между катодной и анодной зонами, состоит из раскаленных ионизированных частиц. Температура в этой зоне достигает 6000–7000 °C в зависимости от плотности сварочного тока.

Для возбуждения дуги в начальный момент необходимо несколько большее напряжение, чем при ее последующем горении. Это объясняется тем, что при возбуждении дуги воздушный зазор недостаточно нагрет, степень ионизации недостаточно высокая и необходимо большее напряжение, способное сообщить свободным электронам достаточно большую энергию, чтобы при их столкновении с атомами газового промежутка могла произойти ионизация.

Увеличение концентрации свободных электронов в объеме дуги приводит к интенсивной ионизации дугового промежутка, а отсюда к повышению его электропроводности. Вследствие этого напряжение тока падает до значения, которое необходимо для устойчивого горения дуги. Зависимость напряжения дуги от тока в сварочной цепи называют статической вольт-амперной характеристикой дуги.

Вольт-амперная характеристика дуги имеет три области: падающую, жесткую и возрастающую.

В первой (до 100 А) с увеличением тока напряжение значительно уменьшается. Это происходит в связи с тем, что при повышении тока увеличивается поперечное сечение, а следовательно, и проводимость столба дуги.

Во второй области (100–1000 А) при увеличении тока напряжение сохраняется постоянным, так как сечение столба дуги и площади анодного и катодного пятен увеличиваются пропорционально току. Область характеризуется постоянством плотности тока.

В третьей области увеличение тока вызывает возрастание напряжения вследствие того, что увеличение плотности тока выше определенного значения не сопровождается увеличением катодного пятна ввиду ограниченности сечения электрода.

Дуга первой области горит неустойчиво и поэтому имеет ограниченное применение. Дуга второй области горит устойчиво и обеспечивает нормальный процесс сварки.

Необходимое напряжение для возбуждения дуги зависит от рода тока (постоянный или переменный), материала электрода и свариваемых кромок, дугового промежутка, покрытия электродов и ряда других факторов. Значения напряжений, обеспечивающих возникновение дуги в дуговых промежутках, равных 2–4 мм, находятся в пределах 40–70 В.

Напряжение для установившейся сварочной дуги определяется по формуле:

U= a + b ? l,

где: а – коэффициент, по своей физической сущности составляющий сумму падений напряжений в зонах катода и анода, В;

b – коэффициент, выражающий среднее падение напряжения на единицу длины дуги, В/мм;

1 – длина дуги, мм.

Рис. 47.

Схема сварочной дуги и падения напряжений в ней:

1 – электрод; 2 – изделие; 3 – анодное пятно;

4 – анодная область дуги; 5 – столб дуги;

6 – катодная область дуги; 7 – катодное пятно

Длиной дуги называется расстояние между торцом электрода и поверхностью сварочной ванны. Короткой дугой называют дугу длиной 2–4 мм. Длина нормальной дуги составляет 4–6 мм. Дугу длиной более 6 мм называют длинной.

Оптимальный режим сварки обеспечивается при короткой дуге. При длинной дуге процесс протекает неравномерно, дуга горит неустойчиво – металл, проходя через дуговой промежуток, больше окисляется и азотируется, увеличиваются угар и разбрызгивание металла.

При помощи магнитных полей, создаваемых вокруг дуги и в свариваемой детали, электрическая сварочная дуга может быть отклонена от своего нормального положения. Эти поля действуют на движущиеся заряженные частицы и тем самым оказывают воздействие на всю дугу. Такое явление называют магнитным дутьем. Воздействие магнитных полей на дугу прямо пропорционально квадрату силы тока и достигает заметного значения при сварочных токах более 300 А.

Магнитные поля оказывают отклоняющее действие на дугу при неравномерном и несимметричном расположении поля относительно дуги. Наличие вблизи сварочной дуги значительных ферромагнитных масс нарушает симметричность магнитного поля дуги и вызывает отклонение дуги в сторону этих масс.

В некоторых случаях магнитное дутье затрудняет процесс сварки, и поэтому принимаются меры по снижению его действия на дугу. К таким мерам относятся:

• сварка короткой дугой;

• подвод сварочного тока в точке, максимально близкой к дуге;

• наклон электрода в сторону действия магнитного дутья;

• размещение у места сварки ферромагнитных масс.

При использовании переменного тока анодное и катодное пятна меняются местами с частотой, равной частоте тока. С течением времени напряжение и ток периодически изменяются от нулевого значения до наибольшего. При переходе значения тока через нуль и перемене полярности в начале и в конце каждого полупериода дуга гаснет, температура активных пятен и дугового промежутка снижается. Вследствие этого происходят деионизация газов и уменьшение электропроводности столба дуги. Интенсивнее падает температура активного пятна, расположенного на поверхности сварочной ванны, в связи с отводом теплоты в массу основного металла.

Повторное зажигание дуги в начале каждого полупериода возможно только при повышенном напряжении, называемом пиком зажигания. При этом установлено, что пик зажигания несколько выше, когда катодное пятно находится на основном металле.

Для облегчения повторного зажигания, снижения пика зажигания дуги и повышения устойчивости ее горения применяют меры, позволяющие снизить эффективный потенциал ионизации газов в дуге. В этом случае электропроводность дуги после ее угасания сохраняется дольше, пик зажигания снижается, дуга легче возбуждается и горит устойчивее.

Применение различных стабилизирующих элементов (калий, натрий, кальций и др.), вводимых в зону дуги в виде электродных покрытий или в виде флюсов, относится к этим мерам.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Что такое электродуговая сварка?

Хотя дуговая сварка является одним из старейших методов соединения металлических предметов, она до сих пор широко используется в промышленности и энтузиастами-любителями. Однако знаете ли вы, что такое электродуговая сварка? Узнайте в нашей статье!

Что такое электрическая дуга?

Прежде чем мы объясним, чем характеризуется этот метод сварки, стоит ознакомиться с его основами.Я говорю об электрической дуге, конечно. Что это такое и как это делается?

Электрическая дуга — это канал, который светится между двумя элементами с противоположными полюсами. Точнее, один объект перенасыщен электронами, то есть отрицательно заряженными частицами, а другой их не имеет, что делает его заряженным положительно.

— ЛУЧШИЙ МОМЕНТ
ДЛЯ РАЗВИТИЯ БИЗНЕСА!

ПРОВЕРЬТЕ ТОВАРЫ СКИДКИ

Поскольку все в природе стремится к равновесию, ионы делают все возможное, чтобы смешаться.В результате происходит пробой, который создает высокую температуру и напряжение. Они ионизируют молекулы воздуха, создавая электропроводящую плазму. Кратковременный ионный обмен протекает в виде искры или молнии, а долговременный — в виде электрической дуги.

Что такое дуговая сварка?

Как нетрудно догадаться, дуговая сварка использует высокую температуру, образующуюся во время пробоя, для неразъемного соединения металлических элементов.Сварщик в зависимости от выбранной силы тока, давления газа, типа аппарата и условий может нагреть металл от 3500 до 15500°С.

Явление лежит в основе популярных методов сварки: MIG/MAG, TIG и MMA.

Сварка методом MIG/MAG

Сварка MIG/MAG

основана на использовании плавящегося электрода в виде сварочной проволоки и защитного газа. Газ может быть инертным, например, аргон или гелий, или активным, как углекислый газ. В первом случае речь идет о сварке MIG (Metal Inert Gas), а во втором – MAG (Metal Active Gas).

Электрическая дуга вызвана так называемым контакт тока между свариваемым объектом и концом проволоки, выходящей из горелки. Высокая температура расплавляет электрод, образуя жидкую сварочную ванну, которая при затвердевании становится сварным швом. Это делает возможной дуговую сварку MIG/MAG.

Роль защитного газа заключается в защите сварочной ванны от окисления и других внешних воздействий. Это необходимо для обеспечения надлежащей прочности сварного шва.

Сварка ВИГ

Сварка TIG

отличается от ранее описанной техники использованием неплавящегося вольфрамового электрода. Однако, как и при сварке MIG, для защиты сварочной ванны используется аргон, гелий или смесь инертных газов.

Поскольку температуры дуговой сварки недостаточно для расплавления вольфрама, содержащегося в электроде, необходимо использовать внешний материал, формирующий сварной шов. Поэтому метод TIG часто требует использования специальных стержней или проволоки, которые плавятся во время сварки.Иногда достаточно оплавить края соединяемых объектов, чтобы получился сварной шов.

Сварка ММА

Последний из описанных способов – это сварка покрытым электродом, т.е. с применением сварочных аппаратов ММА. Упомянутый электрод состоит из металлического сердечника и специального покрытия. Электрическая дуга создается между заготовкой и сердечником. Высокая температура плавит металлический стержень, который при затвердевании образует сварной шов.

Крышка предназначена для обеспечения надлежащего качества соединения.Во время сварки образует шлак, защищающий дугу. Кроме того, газы выделяются из запаздывания, экранирующего гидродинамический шов. Благодаря этому готовое соединение отличается высокой прочностью.

Стоит отметить, что при методе ММА электродуговая сварка может осуществляться с питанием переменным или постоянным током и с положительной или отрицательной полярностью.

Дуговая сварка требует соответствующего оборудования

Дуговая сварка не очень сложна по сравнению с другими методами.Однако, если вы хотите его использовать, вам понадобится подходящий сварочный аппарат. Стоит подумать, какое оборудование будет соответствовать вашим ожиданиям. Вы можете выбрать из различных моделей сварочных аппаратов MIG/MAG, TIG и MMA. Принимая это непростое решение, помните, что вы можете рассчитывать на помощь профессионалов. Советы, какой инверторный сварочный аппарат купить для своей мастерской, смотрите в нашей следующей статье.

.

Что такое сварка? Сварка – подробное объяснение

Процессы сварки – подробное объяснение

Сварка заключается в соединении материалов путем их нагревания и расплавления в месте соединения с добавлением или без добавления связующего. Источником тепла обычно является сварочная дуга, образованная током, генерируемым источником сварочного тока. Дуговая сварка – это дуговая сварка.

Для дуговой сварки можно использовать только тепло, выделяемое дугой, при котором детали сплавляются друг с другом.Например, так выглядит сварка вольфрамовым электродом в среде инертного газа (TIG).

Однако обычно наполнитель также вплавляется в шов. Подается через механизм подачи проволоки, к которому подключен сварочный пистолет (сварка МИГ/МАГ), или вручную в виде покрытого электрода. Присадочный материал должен иметь примерно ту же температуру плавления, что и свариваемый материал.

Перед началом сварки кромки свариваемых деталей должны быть подготовлены для получения подходящей разделки под сварку, напр.V-образный. Во время сварки дуга расплавляет края разделки и сварочный материал. Это создает сварочную ванну.

При неразъемном сварном шве расплавленная сварочная ванна должна быть защищена от окисления и воздействия окружающего воздуха, например, защитными газами или шлаком. Защитный газ подается в сварочную ванну с помощью сварочного пистолета. Сварочный электрод покрыт материалом (оболочкой), который при плавлении выделяет защитный газ и шлак.

Наиболее часто свариваемыми материалами являются такие металлы, как алюминий, мягкая сталь и нержавеющая сталь. Но вы также можете сваривать пластмассы. При сварке пластмасс источником тепла является горячий воздух или электрический резистор.

Сварочная дуга

Сварочная дуга представляет собой электрический импульс, протекающий между сварочным электродом и заготовкой. Дуга возникает, когда между элементами генерируется достаточно большой импульс напряжения.При сварке TIG он создается бесконтактным зажиганием или когда пользователь трется электродом о свариваемый материал (царапающее зажигание).

После зажигания напряжение - подобное разряду молнии - проходит через воздушный зазор и образует дугу с температурой в несколько тысяч градусов (до 10 000°С). Поскольку между заготовкой и электродом постоянно протекает ток, перед началом работы заготовку необходимо заземлить с помощью кабеля заземления, подключенного к сварочному аппарату.

При сварке MIG/MAG электрическая дуга создается за счет контакта присадочного материала с поверхностью заготовки и создания короткого замыкания.Затем эффективный ток короткого замыкания плавит конец сварочной проволоки и образуется дуга. Для получения гладкого и прочного шва сварочная дуга должна быть стабильной. Поэтому при сварке MIG/MAG сварочное напряжение и скорость подачи проволоки должны быть адаптированы к свариваемому материалу и его толщине.

Техника сварки влияет на то, будет ли дуга мягкой или жесткой, и, следовательно, на качество сварного шва. Также важно расстояние между сварочным электродом и канавкой, а также поддержание постоянной скорости движения горелки.Выбор правильного напряжения и скорости подачи проволоки является основным навыком каждого сварщика.

Однако современное сварочное оборудование предлагает множество функций, облегчающих работу сварщиков, таких как сохранение предыдущих настроек сварки или вызов готовых синергетических линий, что значительно упрощает настройку параметров аппарата под задачу.

Защитный газ в процессе сварки

Защитный газ часто оказывает большое влияние на производительность и качество сварки.Как следует из названия, защитный газ защищает расплавленный шов от окисления, а также от загрязнения и влаги в воздухе. В противном случае эти факторы могут снизить коррозионную стойкость сварного шва, повысить его пористость и ослабить его долговечность за счет изменения геометрии соединения. Защитный газ также охлаждает сварочную горелку. Чаще всего он состоит из аргона, гелия, углекислого газа и кислорода.

Защитный газ может быть инертным или активным. Инертный газ не вступает в реакцию со сварочной ванной.Активный газ, напротив, принимает участие в процессе сварки – стабилизирует дугу и выравнивает подачу материала в сварной шов. Инертный газ используется для сварки MIG (сварка плавящимся электродом в среде инертного газа), а активный газ – для сварки MAG (сварка плавящимся электродом в среде активного газа).

Примером инертного газа является аргон, который не вступает в реакцию с расплавленным сварочным швом. Это наиболее часто используемый защитный газ при сварке TIG. Однако углекислый газ и кислород реагируют с расплавленным сварным швом так же, как и смесь углекислого газа и аргона.

Гелий (He) также является популярным инертным защитным газом. Гелий и смесь гелия и аргона используются при сварке TIG и MIG. Гелий способствует большему проплавлению и обеспечивает более высокую скорость сварки, чем аргон.

Углекислый газ (CO2) и кислород (O2) являются активными газами, используемыми в качестве окисляющих компонентов для стабилизации дуги и сглаживания процесса подачи материала при сварке MAG. Точные пропорции компонентов защитного газа зависят от марки стали.

Сварочные нормы и стандарты

Сварочные процессы, а также конструкция и функциональность сварочного оборудования и принадлежностей регулируются различными международными стандартами. Они содержат определения, инструкции и ограничения по процедурам и конструкции машин, направленные на повышение безопасности и обеспечение высокого качества продукции.

Сварочные аппараты, как правило, подпадают под действие IEC 60974-1, а технические условия поставки и формы, размеры, допуски и маркировка изделий определяются в SFS-EN 759.

Безопасность при сварке

Сварка связана с рядом рисков. Электрическая дуга испускает очень яркий свет и УФ-излучение, которые могут повредить ваше зрение. Брызги и искры расплавленного металла могут обжечь кожу и вызвать пожар, а пары, выделяющиеся при горении, могут быть опасны для органов дыхания.

Однако всех этих опасностей можно избежать при правильной подготовке и правильном защитном снаряжении.

Для снижения риска возгорания перед началом работы проверьте окрестности места сварки и удалите все легковоспламеняющиеся материалы.Также должны быть подготовлены средства пожаротушения. Рабочее место также должно быть недоступно для посторонних.

Защищайте глаза, уши и кожу соответствующими средствами индивидуальной защиты. Сварочная маска с автозатемняющимся фильтром защищает глаза, волосы и уши. Защищайте глаза, уши и кожу соответствующими средствами индивидуальной защиты.

Рабочее место также должно иметь достаточную вентиляцию для удаления сварочного дыма.

Подробнее о безопасности при сварке

Методы сварки

Методы сварки классифицируются в зависимости от способа выделения тепла и способа подачи присадочного материала. Выбор конкретной техники зависит от свариваемого материала и его толщины, требуемой эффективности работы, желаемых эстетических качеств и целевого качества сварного шва.

Наиболее распространенными методами сварки являются MIG/MAG, TIG и MMA (сварка электродом с покрытием).Самым старым, самым известным и наиболее часто используемым методом является сварка ММА. Он широко используется для установки и наружных работ, требующих оборудования, которое легко носить с собой и использовать.

Медленная сварка TIG дает очень хорошие швы, поэтому этот метод используется для видимых или очень точных сварных швов.

Сварка MIG/MAG чрезвычайно универсальна, поскольку нет необходимости отдельно подавать присадочный материал в сварочную ванну.Вместо этого из сварочного пистолета сварочная проволока подается в газовой защите непосредственно в сварочную ванну.

Существуют также другие методы сварки для специальных применений, такие как лазерная, плазменная, дуговая сварка под флюсом, ультразвуковая, автоматическая сварка с ЧПУ, точечная сварка и сварка трением.

.

Описание метода TIG | ICD.pl

Описание метода TIG

ICD.pl 2 февраля 2015 Сварка TIG

Сварка TIG (вольфрам в инертном газе) заключается в создании электрической дуги с использованием неплавящегося вольфрамового электрода в среде инертного газа. Часто встречается обозначение GTAW (Gas Tungsten Arc Welding) (в основном в США).

Сварочная дуга между неплавящимся электродом и заготовкой плавит поверхность заготовки. При сварке TIG нет необходимости использовать какой-либо дополнительный материал.Сварные элементы можно соединять путем переплавки разделки под сварку. Однако если используется дополнительный материал, то он вводится в ванну вручную, а не с помощью сварочного пистолета, как в методе MIG/MAG. Поэтому при сварке TIG сварочная горелка имеет совершенно другую конструкцию, чем горелка, используемая в методе MIG/MAG. Связующее обычно выпускается в виде проволоки (стержня) длиной 1 м и правильно подобранного диаметра.

Процесс сварки TIG происходит в атмосфере химически инертного защитного газа, чаще всего аргона или гелия, поступающего из сопла электрододержателя.Защитный газ защищает сварной шов и электрод от окисления, но не влияет на металлургический процесс.

Схема сварки ВИГ

Сварка ВИГ кратко:

Когда вольфрамовый электрод (неплавящийся материал!) приваривается ближе к материалу появляется дуга, которая расплавляет материал и подаваемый материал рядом с рукояткой, связующее TIG (металлический стержень) создает жидкую сварочную ванну. После того, как дуга отходит, сварочная ванна затвердевает, образуя неразъемное соединение.Защитный газ непрерывно подается через сварочную горелку и ее газовое сопло для защиты расплавленного металла от атмосферы.
Патроны могут иметь жидкостное охлаждение (как показано на схеме) - охлаждающая жидкость подается на патрон и работает в замкнутом контуре с радиатором.
На вольфрамовый электрод подается напряжение по токопроводу от источника питания (сварочного аппарата).

Особенности сварки с помощью нерегумационного электрода TIG

  • Преимущества:

    • Universal - почти все металлы и общие. для сварки тонкие листы - примерно от 0,5мм,

    • высокое качество и чистота сварного шва ,

    • простота контроля сварочной ванны, количества тепла и дополнительного материала,

      нет брызги жидкого металла,

    • простота освоения сварки вручную сварщиком,

    • возможность механизации и автоматизации метода.

  • Недостатки:

    • Низкая скорость сварки, низкая производительность, особенно с более толстыми элементами,

    • Качество сварных шв. используемые для зажигания сварочной дуги, могут создавать помехи другим электронным устройствам.

Применение метода TIG

Метод TIG позволяет получить исключительно чистый и качественный сварной шов .В процессе не образуется шлак, что исключает риск загрязнения шва его включениями, а готовый шов практически не требует очистки. Метод TIG чаще всего используется для сварки нержавеющих сталей и других высоколегированных сталей и таких материалов, как алюминий , медь , титан , никель и их сплавы.

Сварка ВИГ используется, среди прочего, для сварки труб, трубопроводов и тонких листов.Используется в различных отраслях промышленности, в том числе пищевая, химическая, автомобильная, авиационная.

.

Ручная дуговая сварка | Доб-Spaw.pl

Опубликовано: 29 августа 2014 г.

Другие названия: дуговая сварка покрытым электродом, электросварка, метод работы: ручной, источник тепла: электрическая дуга, покрытие бассейна: в основном флюс, частично флюсовый газ, диапазон тока: 25,350А, тепловая мощность: 0,5¸11кДж/с.

Принцип работы

Сварщик зажигает дугу между кончиком электрода и основным металлом заготовки.Дуга расплавляет основной металл и электрод, образуя сварочную ванну, защищенную слоем расплавленного флюса и газа, образующегося при флюсовом покрытии сердцевины электрода. Сварщик перемещает электрод к сварочной ванне, чтобы поддерживать постоянную длину дуги, одновременно перемещая ее в направлении сварки. Текущее значение устанавливается в источнике питания. Длина электродов стандартизирована и чаще всего составляет 450 мм.Если электрод оплавляется на длину около 50 мм, сварщик разрывает дугу.Затвердевший шлак следует удалить с поверхности сварного шва и продолжить сварку новым электродом. Типичные области применения - производство сосудов под давлением, корпусов кораблей, стальных конструкций, соединение труб и трубопроводов, строительство и ремонт машин.

Характеристики метода 9000 9

Ручная дуговая сварка покрытым электродом — это процесс, при котором неразъемное соединение достигается путем сплавления тепла электрической дуги расходуемого электрода с покрытием и обрабатываемой детали.Электрическая дуга горит между сердечником покрытого электрода и свариваемым материалом.Электрод с покрытием перемещается оператором вручную по линии сварки и устанавливается под углом относительно стыка. Сварной шов соединения образован расплавленным теплом дуги металлическим сердечником электрода, металлическими компонентами покрытия электрода и расплавленными кромками свариваемого (основного) материала. Доля основного материала в шве в зависимости от типа свариваемого металла и способа сварки может составлять 10-40 %.

Сварочная дуга может работать на переменном или постоянном токе с отрицательной или положительной полярностью.Дуга экранируется газами и жидким шлаком, образующимися в результате разрушения электродной оболочки под действием тепла дуги. В состав газовой защиты в зависимости от химического состава оболочки входят СО2, СО, Н3О и продукты их разложения. Сварка начинается после зажигания дуги между покрытым электродом и заготовкой; интенсивный нагрев дуги, с температурой в центре дуги до 6000 К, расплавляет электрод, металл которого переносится в сварочную ванну. Перенос металла сердечника покрытого электрода в сварочной дуге может происходить, в зависимости от вида покрытия, крупнокапельным, мелкокапельным или даже напылением.

Количество образующихся газа и шлака, экранирующих дугу, и их химический состав зависят от типа покрытия электрода и его толщины. Применяются покрытия различной толщины по отношению к диаметру сердцевины, а их названия: рутиловые, кислотные, основные, фторидные, циркониевые, рутилово-основные, целлюлозные и др. зависят от химических свойств компонентов оболочки. Электроды обычно изготавливают с диаметром сердечника в пределах от 1,6 до 6,0 мм и длиной от 250 до 450 мм.

Основные функции отставания:

- Дуговая защита от доступа атмосферы,
- Введение в зону сварки элементов, раскисляющих, связывающих азот и рафинирующих жидкий металл шва,
- Создающих шлаковое покрытие над жидкой ванной и затвердевающим металлом шва,
- Контроль химический состав сварного шва.

Все эти функции используются для обеспечения требуемых качественных и эксплуатационных свойств сварного соединения.

Станция для ручной дуговой сварки покрытым электродом состоит из:

- Источник питания постоянного или переменного тока,
- Электрододержатель, подающий сварочный ток на электрод,
- Сварочные кабели, подающие сварочный ток от источника питания к горелке и к изделию,
- Дистанционное управление источником питания,
- Сварочная оснастка,
- Вытяжка сварочного дыма (в энергетике из-за специфики работы трудновыполнимое условие).

Параметры сварки

Ход процесса сварки в значительной степени зависит от квалификации оператора (сварщика). Параметры сварки, определяемые в технологических условиях сварки конкретной конструкции, составляют исходные данные оператора, под которые он подстраивает свой сварочный опыт и мануальные навыки.

Основные параметры сварки MMA:

- Вид сварочного тока,
- Напряжение дуги,
- Скорость сварки,
- Диаметр электрода и его положение относительно спая.

а) Сварочный ток обычно выбирают исходя из каталожных данных производителя. Этот параметр в наибольшей степени определяет тепловую энергию дуги, т.е. глубину проплавления и скорость плавления. При постоянном диаметре электрода с увеличением силы тока повышается температура плазмы дуги, увеличивается эффективность проплавления и количество сплавляемого металла шва, а также глубина, ширина и длина сварочной ванны. Выбор сварочного тока зависит от вида свариваемого материала, типа электрода, его диаметра, рода тока, положения сварки и способа наложения отдельных наплавленных валиков.

b) Напряжение дуги пропорционально длине дуги и оказывает явное влияние на характер переноса металла в дуге, скорость сварки и эффективность наплавки металла шва. С увеличением напряжения дуги увеличивается ее энергия и, следовательно, объем сварочной ванны. Особенно заметны ширина и длина озера. При постоянной силе тока увеличение напряжения на дуге незначительно влияет на глубину проплавления. Длина лука регулируется оператором и зависит от его мануальных навыков и зрительного восприятия.Выбор напряжения дуги зависит от типа электрода, положения сварки, рода и силы тока, способа наложения наплавленных валиков.

(c) Скорость сварки – это скорость, с которой электрод перемещается по сварному шву. Скорость сварки можно рассматривать как скорость движения конца электрода, а также как скорость выполнения одного метра соединения, и тогда учитываются все вспомогательные времена, например, время замены электрода, очистки сварного шва. предыдущая бисерина и т.д.

Скорость, с которой дуга движется по стыку, зависит от:

- Род тока, полярность и сила тока,
- Напряжение дуги,
- Положения сварки,
- Скорость плавления электрода,
- Толщина свариваемого материала и форма соединения,
- Точность подгонки соединения,
- Требуемые движения кончика электрода.

d) Диаметр электрода с покрытием определяет плотность сварочного тока и, следовательно, форму наплавленного валика, глубину провара и возможность сварки в вынужденных положениях.Увеличение диаметра электрода при постоянной силе тока приводит к уменьшению глубины проплавления и увеличению ширины шва. Правильно подобранным диаметром электрода считается такой, при котором при правильном токе и скорости сварки в кратчайшие сроки получается сварной шов требуемой формы и размеров.
д) Наклон электрода по отношению к стыку позволяет регулировать форму шва, глубину проплавления, ширину забоя и высоту гребня, высота и ширина забоя увеличиваются.Наклон электрода в направлении сварки приводит к вдавливанию жидкого металла в заднюю часть сварочной ванны, глубина проплавления увеличивается, а ширина и высота забоя уменьшаются.

Зажигание дуги

Дугу можно зажечь, замкнув конец электрода на предмет и быстро отведя его на необходимую длину дуги, или производя колебательные движения кончиком электрода, трущихся о поверхность предмета. Мы зажигаем дугу в зоне сварки, опережая начальную точку сварки примерно на 10 мм, и после стабилизации дуги возвращаем ее в начальную точку, чтобы начать нормальную сварку.
Оборудование для дуговой сварки MMA
Оборудование для дуговой сварки MMA:

- трансформаторы сварочные,
- источники питания сварочные выпрямительные,
- преобразователи сварочные,
- генераторы сварочные.

Источник: www.mechanik.piwko.pl

.

Проектирование и инженерные конструкции. Проектирование сварных швов в современных технологиях сварки

Страница 1 из 5


Современный подход к проектированию сварных соединений заключается в расчете напряжений и умножении их на коэффициент запаса по технологической неосведомленности проектировщика. Но можно ли применить абстрактное понятие сварочных напряжений к разнородным материалам?

Рышард Ястржебски

Представим ферму, обтянутую бумагой, окрашенной в стальной цвет.Конструктор, исходя из нагрузки и прогиба, предполагая однородность материала, рассчитает напряжения в любой точке балки. Однако после прокалывания бумаги оказывается, что в месте расчетных напряжений находится воздух, не передающий внутренние силы... Соединение затвердевает, и в его окрестностях, известных как зона термического влияния, находятся все возможные зоны термического влияния. Казалось бы, в таких микроскопических областях невозможно определить кривые растяжения, а сравнивать прочностные свойства материалов в микромасштабе можно только на основе микротвердости по Виккерсу.Несколько лет назад в США появились микроскопические испытательные машины, выполняющие роль пробойника, который прорезает микроотверстие в фольге сечения сварного шва. В процессе масштабирования устройства график силы резания микроотверстия и перемещения после умножения на постоянную величину дает график, полученный при растяжении больших образцов. На рис. 1 показано несколько таких кривых растяжения. По мере увеличения степени упрочнения кривая становится круче и растрескивание происходит при меньшей деформации.Если бы сварной шов представлял собой набор пружин, то в результате растяжения, после превышения допустимой деформации самой жесткой пружины, пружина разрывалась бы, а остальные пружины несли бы нагрузку. Поскольку сварной шов представляет собой кристалл, разрушение микроучастка приведет к растрескиванию всего сварного шва. Это означает, что в случае неоднородных материалов использование понятия напряжения не имеет смысла. Поэтому вместо контроля напряжений следует исследовать деформацию, и единственным разумным подходом в этом случае является установление критерия максимальной деформации наиболее хрупкой микрочасти сварного шва.Это настоящая революция в области испытаний на прочность материалов. Однако из опыта известно, что при допущении к эксплуатации автокранов и мостов испытание под нагрузкой является испытанием на деформацию.


Рис. 1 Кривые прочности для различных участков сварного соединения. Влияние нагрева на термическую деформацию и резерв на деформацию кривых прочности.

Разберем модель Dr. Marian Bal от AGH для энергетических сталей 10х3М. Предположим, что сварной шов термически деформируется на L1.На схеме рис. 1 видно, что сварной шов будет разрываться в точках В, С, D.
Если нагреть точку сварки на расстоянии 150 мм от стыка, то деформация уменьшится на ∆L и составит L2. На диаграмме видно, что нагрев вызовет трещину в точке D. С другой стороны, нагрев вызовет меньшее упрочнение, и кривая D изменится на кривую С, что приведет к тому, что сварной шов не разорвется, но с меньшим запасом деформации. Если место сварки ранее подвергалось наклепу, то такая обработка приведет к потере резерва деформации (более крутые кривые прочности на рис. 1) и приведет к растрескиванию шва, несмотря на нагрев.Поэтому Управление технического надзора не допускает стыков на «коленах», а их расстояние от места холодной пластической деформации должно быть 150 мм.

Количественный контроль тепловых процессов сварки на этапе проектирования
Одним из этапов проектирования является утверждение технологии сварки на основе европейских стандартов и стандартов ISO. Это обязывает подрядчика провести испытания сварки и полностью проверить прочность пробных сборок и определить параметры сварки и погонную энергию, при которых все испытания будут положительными.Затем допускаются параметры сварки, при которых погонная энергия составляет - от 0,8 погонной энергии сварки в пристенном положении до 1,2 погонной энергии сварки в вертикальном положении.

Можно задаться вопросом, почему европейские стандарты ввели понятие линейной энергии и откуда оно взялось, и всегда ли правильно контролировать линейную энергию. Мы постараемся объяснить этот вопрос ниже.


рис.2 Старая и новая модели анализа процессов термической сварки

Управление процессами термической сварки основано на решении дифференциальных уравнений теплообмена при сварке.В 70-х годах появились работы, описывающие процессы распространения тепла путем решения уравнений теплообмена. Так как в случае плавления металлов задача довольно сложная, так как решения таких дифференциальных уравнений могут быть получены относительно просто для линейных функций, был опущен очень важный элемент — нелинейный ввод теплоты плавления. Для любознательного физика это было бы неприемлемо, но возобладали практические соображения и возможность расчета скорости охлаждения и прогнозирования упрочнения околошовной зоны.Удивительно, но математики, выполняющие цифровые расчеты с использованием метода конечных элементов, вместо того, чтобы попытаться приблизиться к реальности, попытались подогнать «обратную» функцию, вставив виртуальное распределение температуры дуги. Это было возможно потому, что в 1980-е годы только нынешний ректор Ягеллонского университета проф. У Мусиола был стенд для изучения распределения температуры дуги. На существовавших тогда компьютерах «Одра» измерения ФЭУ занимали несколько часов, а расчеты — несколько недель.
Только недавно появились методы измерения температуры точечной лазерной дуги в режиме реального времени, при которых два луча лазера на красителе сталкиваются, образуя один луч, несущий информацию о точечной температуре электрической дуги.

.Сварка ММА

- сварка покрытым электродом.

Сварка ММА

— один из старейших и наиболее распространенных методов дуговой сварки. Электрод с покрытием (стержневой электрод с покрытием) был впервые использован в 1907 году, а его изобретателем был Оскар Кильберг. Стоит упомянуть польскую резьбу в истории дуговой сварки, а именно до изобретения электрода с покрытием применялись способы сварки неплавящимся угольным электродом и плавлением стального стержня в электрической дуге.Изобретателями первого были в 1885 году русский Бернардос и поляк Ольшевский.

Ручная дуговая сварка электродом с покрытием (сварка ММА) — это процесс, при котором сварное соединение получается путем сплавления сварочной дуги, расходуемого электрода с покрытием и заготовки с помощью тепла. Электрическая дуга горит между стержнем электрода, покрытым специальным покрытием, и свариваемым материалом. Сварщик направляет плавящийся электрод под прямым углом к ​​заготовке по линии сварки.В результате оплавления электрода укорачивается его длина, одновременно сокращается расстояние между рукой сварщика и свариваемым элементом (сварка ММА требует соответствующей практики). Сварной шов образуется под действием тепла дуги: металлического сердечника электрода, металлических компонентов покрытия и расплавленного материала. В зависимости от типа свариваемого материала и способа сварки доля основного материала в соединении может составлять от 10 до 40 %.

Экран дуги и сварочной ванны изготавливается из газов и жидкого шлака, образующихся в результате пробоя оболочки под действием температуры дуги вплоть до 6000 К (ок.5727 С). Количество образующегося защитного газа и шлакового слоя зависит главным образом от типа и толщины покрытия (например, рутиловое, основное, рутилово-основное, целлюлозное). Из-за образовавшегося шлакового слоя сварной шов требует достаточно трудоемкой механической обработки, что выражается в низкой скорости сварки по сравнению с другими методами (например, MIG/MAG).

Дуга загорается при трении кончика электрода о заготовку. Сварочная дуга может питаться переменным или постоянным током положительной/отрицательной полярности (в зависимости от типа электродов).Перенос металла стержня электрода в сварочную ванну может быть крупнокапельным, мелкокапельным или даже распылительным.

Сварка ММА, схема.

Также не забудьте прочитать

.

Сварка под дугой - Наплавка Śląskie - Наплавка под дугой

Jamet предлагает профессиональную дуговую сварку под флюсом. Приглашаем вас ознакомиться с предложением ниже и понять, почему стоит начать сотрудничество именно с нами!

Почему нам стоит доверять?

Наша компания уже более тридцати лет оказывает комплексные услуги, связанные с производством запасных частей, а также обработкой и регенерацией стальных элементов.До сих пор нам доверяли обе глобальные концерны, такие как Fiat и ArcelorMittal. Однако это не означает, что мы не помогаем малым предприятиям. Каждый год новые предприятия открывают свою деятельность. Мы прилагаем все усилия, чтобы каждый заказ, вне зависимости от репутации клиента, был выполнен с максимальной эффективностью. Потому что хотя мы подходим к каждому заказу индивидуально, мы всегда стараемся поддерживать высочайший уровень качества обслуживания.

Что такое дуговая сварка под флюсом?

Этот метод сварки, также называемый сваркой под флюсом (дуговая сварка под флюсом), представляет собой процесс, при котором сварочная дуга светится между заготовкой и проволочным электродом.Название этой процедуры связано с тем, что дуга невидима, поскольку покрыта слоем гранулированного флюса. Флюс частично расплавляется, образуя на устройстве шлак. Необработанная проволока сматывается с барабана или катушки и затем подается системой роликов с электрическим приводом к разделке под сварку.

При наплавке под флюсом температура дуги колеблется в пределах 5000 - 6000 К. При такой высокой температуре происходит расплавление электродной проволоки и части основного материала.Затем мы можем наблюдать появление т.н. сварочная ванна. Это озеро отделено от атмосферы талым потоком. Благодаря этому дуга стабилизируется, а сам флюс также контролирует химический состав связующего, а также влияет на общую форму валика. Под действием повышенного давления здесь выделяются газы и пар, которые создают вокруг дуги газовое пространство. Это пространство, в свою очередь, отделено от воздуха жидким шлаком, чаша которого окружена газами.

При дуговой сварке под флюсом также большое значение имеет ряд параметров, таких как напряжение дуги, скорость сварки и сила тока.Они определяют, как долго металл шва остается в жидком состоянии. В течение нескольких секунд в бассейне происходят химические реакции, придающие суставу специфическую форму и консистенцию. Когда дуга начинает отступать, бассейн кристаллизуется. Затем формируется валик, на поверхности которого сразу появляются твердые слои шлака, удаляемые по окончании процедуры. Оставшийся от сварки флюс, который не расплавился, можно повторно использовать при следующей обработке.

Наибольшие преимущества дуговой сварки под флюсом

Эта техника имеет ряд преимуществ, которые делают ее столь популярной среди компаний по всему миру. Во-первых, прокладка под флюсом чрезвычайно эффективна. Конечный результат получается очень прочным, и мы можем надежно укрепить конструкцию. Еще одним преимуществом является высокая культура работы. Стыки чрезвычайно гладкие и на их поверхности нет неприглядных брызг.Сварные соединения прочны и долговечны, устойчивы к экстремальным условиям окружающей среды. Обработка постоянной дугой также очень удобна и эффективна — скорость сварки здесь может достигать очень высоких значений.

Какое у нас есть оборудование для дуговой сварки под флюсом?

Потому что сварка под флюсом — это процедура, которая выполняется на высокотехнологичном оборудовании. Станочный парк компании Jamet имеет две станции для наплавки валков, две станции для наплавки колес и ряд передовых устройств для всех возможных обработок – электродной сварки, TIG и MIG/MAG.Благодаря этому мы можем выполнять эффективную наплавку широкого спектра элементов.

Гарантия рентабельности и эффективности

Мы в Jamet считаем, что к каждому заказу нужно подходить индивидуально, а предполагаемые затраты - корректировать с учетом фактического объема работ. Благодаря этому мы можем гарантировать вам высочайшее качество услуг, которое сочетается с самыми привлекательными ценами в Силезском воеводстве. Наш тщательно обученный, опытный персонал каждый день прилагает все усилия для того, чтобы у наших партнеров было полное ощущение того, что заказанные услуги полностью отражают их оценку.

Приглашаем к сотрудничеству!

Если у вас есть какие-либо вопросы относительно сложной дуговой сварки под флюсом, пожалуйста, обращайтесь в наш сервисный отдел. Наши специалисты помогут вам получить всю необходимую информацию. Свяжитесь с нами сейчас и присоединитесь к растущей группе наших довольных партнеров!

.

Смотрите также